Zinc modulation of a transient potassium current and histochemical localization of the metal in neurons of the suprachiasmatic nucleus

R. C. Huang, Y. W. Peng, K. W. Yau

Research output: Contribution to journalArticle

45 Scopus citations


The effect of Zn2+ on a voltage-dependent, transient potassium current (I(A)) in acutely dissociated neurons from the suprachiasmatic nucleus was studied with the whole-cell patch-clamp technique. At micromolar concentrations, Zn2+ markedly potentiated I(A) activated from a holding potential of -60 mV, which is the resting potential of these neurons. This potentiation occurred at a Zn2+ concentration as low as 2 μM and increased with higher Zn2+ concentrations. The Zn2+ action appears to arise from a shift in the steady-state inactivation of I(A) to more positive voltages. At 30 μM, Zn2+ shifted the half-inactivation voltage by +20 mV (from -80 mV to -60 mV), and 200 μM Zn2+ shifted this voltage by +45 mV (from -80 mV to -35 mV). Histochemically, we have also observed Zn2+ staining throughout the suprachiasmatic nucleus; the staining is particularly intense in the ventrolateral region of the nucleus, which receives the major fiber inputs. Our findings suggest that Zn2+, presumably synaptically released, may modulate the electrical activity of suprachiasmatic nucleus neurons through I(A). Because vesicular Zn2+ is fairly widespread in the central nervous system, it is conceivable that this kind of Zn2+ modulation on I(A), and possibly on other voltage-activated currents, exists elsewhere in the brain.

Original languageEnglish (US)
Pages (from-to)11806-11810
Number of pages5
JournalProceedings of the National Academy of Sciences of the United States of America
Issue number24
StatePublished - Dec 29 1993


ASJC Scopus subject areas

  • General

Cite this