Water-promoted O2 dissociation on small-sized anionic gold clusters

Research output: Contribution to journalArticle

39 Scopus citations

Abstract

Although thermodynamically O2 favors dissociative adsorption over molecular adsorption on small-sized anionic gold clusters (except Au 2-), O2 dissociation is unlikely to proceed under ambient conditions because of the high activation energy barrier (>2.0 eV). Here, we present a systematic theoretical study of reaction pathways for the O2 dissociation on small-sized anionic gold nanoclusters Au n- (n = 1-6) with and without involvement of a water molecule. The density functional theory calculations indicate that the activation barriers from the molecular adsorption state of O2 to dissociative adsorption can be significantly lowered with the involvement of a H2O molecule. Once the O2 dissociates on small-size gold clusters, atomic oxygen is readily available for other reactions, such as the CO oxidation, on the surface of gold clusters. This theoretical study supports previous experimental evidence that H2O can be used to activate O2, which suggests an alternative way to exploit catalytic capability of gold clusters for oxidation applications.

Original languageEnglish (US)
Pages (from-to)2614-2621
Number of pages8
JournalACS Catalysis
Volume2
Issue number12
DOIs
Publication statusPublished - Dec 7 2012

    Fingerprint

Keywords

  • O dissociation
  • nanocatalysts
  • small-sized anionic Au clusters
  • water promotion

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)

Cite this