UV-B biodosimetry in turfgrass canopies

G. Y. Yuen, C. C. Jochum, L. J. Giesler, M. D. Shulski, E. A. Walter-Shea, K. G. Hubbard, G. L. Horst

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Phylloplane microorganisms are affected by ultraviolet (UV) radiation penetrating into plant canopies, bur data as to the relationships between microorganism activity and canopy UV levels is lacking. Current instrumentation and modeling systems are inadequate to analyze canopy radiation environments at scales relevant to microorganisms. A biological dosimeter system was developed for measuring UV-B in turfgrass and other compact canopies. Cell suspensions of a DNA repair-deficient strain of Escherichia coli (CSRO6) were enclosed in packets (0.2-mL volume) of UV-transmissible polyethylene. After the packets were exposed to sunlight, numbers of surviving bacteria were determined. The log percent survival was found to be linearly related to accumulative UV-B dosage, as measured with a broad-band UV-B radiometer, but was not related to UV-A dosage. In one experiment, the performance of the biodosimeter system was compared with that of a miniature UV-B radiometer mounted in soil-level tracks in eight plots of tall fescue (Festuca arundinacea Schreb.) that varied in leaf area index (LAI). The two methods yielded similar mean transmittance values that decreased with increasing LAI, closely fitting Beer's law. A similar relationship was found in a second experiment, in which biodosimeter packets were placed at the base of undisturbed tall fescue canopies. The packets also revealed considerable variation in transmittance possibly because of localized shading and sun flecks in the natural canopies. In a third experiment, direct and diffuse UV-B at different heights within a tall fescue canopy was measured by packets attached to narrow, flat wooden sticks simulating grass leaves. This method has potential as a tool to capture the variability in UV levels related to nonuniformity in canopy structure, depth in a canopy, and leaf orientation.

Original languageEnglish (US)
Pages (from-to)859-868
Number of pages10
JournalCrop Science
Volume42
Issue number3
StatePublished - May 13 2002

Fingerprint

turf grasses
ultraviolet radiation
canopy
Festuca arundinacea
radiometers
transmittance
microorganisms
leaf area index
phylloplane
instrumentation
dosage
DNA repair
beers
polyethylene
cell suspension culture
leaves
shade
solar radiation
Escherichia coli
grasses

ASJC Scopus subject areas

  • Agronomy and Crop Science

Cite this

Yuen, G. Y., Jochum, C. C., Giesler, L. J., Shulski, M. D., Walter-Shea, E. A., Hubbard, K. G., & Horst, G. L. (2002). UV-B biodosimetry in turfgrass canopies. Crop Science, 42(3), 859-868.

UV-B biodosimetry in turfgrass canopies. / Yuen, G. Y.; Jochum, C. C.; Giesler, L. J.; Shulski, M. D.; Walter-Shea, E. A.; Hubbard, K. G.; Horst, G. L.

In: Crop Science, Vol. 42, No. 3, 13.05.2002, p. 859-868.

Research output: Contribution to journalArticle

Yuen, GY, Jochum, CC, Giesler, LJ, Shulski, MD, Walter-Shea, EA, Hubbard, KG & Horst, GL 2002, 'UV-B biodosimetry in turfgrass canopies', Crop Science, vol. 42, no. 3, pp. 859-868.
Yuen GY, Jochum CC, Giesler LJ, Shulski MD, Walter-Shea EA, Hubbard KG et al. UV-B biodosimetry in turfgrass canopies. Crop Science. 2002 May 13;42(3):859-868.
Yuen, G. Y. ; Jochum, C. C. ; Giesler, L. J. ; Shulski, M. D. ; Walter-Shea, E. A. ; Hubbard, K. G. ; Horst, G. L. / UV-B biodosimetry in turfgrass canopies. In: Crop Science. 2002 ; Vol. 42, No. 3. pp. 859-868.
@article{010d9f2010e549be9088ebf92e6fb9d7,
title = "UV-B biodosimetry in turfgrass canopies",
abstract = "Phylloplane microorganisms are affected by ultraviolet (UV) radiation penetrating into plant canopies, bur data as to the relationships between microorganism activity and canopy UV levels is lacking. Current instrumentation and modeling systems are inadequate to analyze canopy radiation environments at scales relevant to microorganisms. A biological dosimeter system was developed for measuring UV-B in turfgrass and other compact canopies. Cell suspensions of a DNA repair-deficient strain of Escherichia coli (CSRO6) were enclosed in packets (0.2-mL volume) of UV-transmissible polyethylene. After the packets were exposed to sunlight, numbers of surviving bacteria were determined. The log percent survival was found to be linearly related to accumulative UV-B dosage, as measured with a broad-band UV-B radiometer, but was not related to UV-A dosage. In one experiment, the performance of the biodosimeter system was compared with that of a miniature UV-B radiometer mounted in soil-level tracks in eight plots of tall fescue (Festuca arundinacea Schreb.) that varied in leaf area index (LAI). The two methods yielded similar mean transmittance values that decreased with increasing LAI, closely fitting Beer's law. A similar relationship was found in a second experiment, in which biodosimeter packets were placed at the base of undisturbed tall fescue canopies. The packets also revealed considerable variation in transmittance possibly because of localized shading and sun flecks in the natural canopies. In a third experiment, direct and diffuse UV-B at different heights within a tall fescue canopy was measured by packets attached to narrow, flat wooden sticks simulating grass leaves. This method has potential as a tool to capture the variability in UV levels related to nonuniformity in canopy structure, depth in a canopy, and leaf orientation.",
author = "Yuen, {G. Y.} and Jochum, {C. C.} and Giesler, {L. J.} and Shulski, {M. D.} and Walter-Shea, {E. A.} and Hubbard, {K. G.} and Horst, {G. L.}",
year = "2002",
month = "5",
day = "13",
language = "English (US)",
volume = "42",
pages = "859--868",
journal = "Crop Science",
issn = "0011-183X",
publisher = "Crop Science Society of America",
number = "3",

}

TY - JOUR

T1 - UV-B biodosimetry in turfgrass canopies

AU - Yuen, G. Y.

AU - Jochum, C. C.

AU - Giesler, L. J.

AU - Shulski, M. D.

AU - Walter-Shea, E. A.

AU - Hubbard, K. G.

AU - Horst, G. L.

PY - 2002/5/13

Y1 - 2002/5/13

N2 - Phylloplane microorganisms are affected by ultraviolet (UV) radiation penetrating into plant canopies, bur data as to the relationships between microorganism activity and canopy UV levels is lacking. Current instrumentation and modeling systems are inadequate to analyze canopy radiation environments at scales relevant to microorganisms. A biological dosimeter system was developed for measuring UV-B in turfgrass and other compact canopies. Cell suspensions of a DNA repair-deficient strain of Escherichia coli (CSRO6) were enclosed in packets (0.2-mL volume) of UV-transmissible polyethylene. After the packets were exposed to sunlight, numbers of surviving bacteria were determined. The log percent survival was found to be linearly related to accumulative UV-B dosage, as measured with a broad-band UV-B radiometer, but was not related to UV-A dosage. In one experiment, the performance of the biodosimeter system was compared with that of a miniature UV-B radiometer mounted in soil-level tracks in eight plots of tall fescue (Festuca arundinacea Schreb.) that varied in leaf area index (LAI). The two methods yielded similar mean transmittance values that decreased with increasing LAI, closely fitting Beer's law. A similar relationship was found in a second experiment, in which biodosimeter packets were placed at the base of undisturbed tall fescue canopies. The packets also revealed considerable variation in transmittance possibly because of localized shading and sun flecks in the natural canopies. In a third experiment, direct and diffuse UV-B at different heights within a tall fescue canopy was measured by packets attached to narrow, flat wooden sticks simulating grass leaves. This method has potential as a tool to capture the variability in UV levels related to nonuniformity in canopy structure, depth in a canopy, and leaf orientation.

AB - Phylloplane microorganisms are affected by ultraviolet (UV) radiation penetrating into plant canopies, bur data as to the relationships between microorganism activity and canopy UV levels is lacking. Current instrumentation and modeling systems are inadequate to analyze canopy radiation environments at scales relevant to microorganisms. A biological dosimeter system was developed for measuring UV-B in turfgrass and other compact canopies. Cell suspensions of a DNA repair-deficient strain of Escherichia coli (CSRO6) were enclosed in packets (0.2-mL volume) of UV-transmissible polyethylene. After the packets were exposed to sunlight, numbers of surviving bacteria were determined. The log percent survival was found to be linearly related to accumulative UV-B dosage, as measured with a broad-band UV-B radiometer, but was not related to UV-A dosage. In one experiment, the performance of the biodosimeter system was compared with that of a miniature UV-B radiometer mounted in soil-level tracks in eight plots of tall fescue (Festuca arundinacea Schreb.) that varied in leaf area index (LAI). The two methods yielded similar mean transmittance values that decreased with increasing LAI, closely fitting Beer's law. A similar relationship was found in a second experiment, in which biodosimeter packets were placed at the base of undisturbed tall fescue canopies. The packets also revealed considerable variation in transmittance possibly because of localized shading and sun flecks in the natural canopies. In a third experiment, direct and diffuse UV-B at different heights within a tall fescue canopy was measured by packets attached to narrow, flat wooden sticks simulating grass leaves. This method has potential as a tool to capture the variability in UV levels related to nonuniformity in canopy structure, depth in a canopy, and leaf orientation.

UR - http://www.scopus.com/inward/record.url?scp=0036235356&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0036235356&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0036235356

VL - 42

SP - 859

EP - 868

JO - Crop Science

JF - Crop Science

SN - 0011-183X

IS - 3

ER -