Use of the Dynamic Visual Acuity Test as a screener for community-dwelling older adults who fall

Julie A. Honaker, Neil T. Shepard

Research output: Contribution to journalArticle

20 Scopus citations

Abstract

Adequate function of the peripheral vestibular system, specifically the vestibulo-ocular reflex (VOR; a network of neural connections between the peripheral vestibular system and the extraocular muscles) is essential for maintaining stable vision during head movements. Decreased visual acuity resulting from an impaired peripheral vestibular system may impede balance and postural control and place an individual at risk of falling. Therefore, sensitive measures of the vestibular system are warranted to screen for the tendency to fall, alerting clinicians to recommend further risk of falling assessment and referral to a falling risk reduction program. Dynamic Visual Acuity (DVA) testing is a computerized VOR assessment method to evaluate the peripheral vestibular system during head movements; reduced visual acuity as documented with DVA testing may be sensitive to screen for falling risk. This study examined the sensitivity and specificity of the computerized DVA test with yaw plane head movements for identifying community-dwelling adults (58-78 years) who are prone to falling. A total of 16 older adults with a history of two or more unexplained falls in the previous twelve months and 16 age and gender matched controls without a history of falls in the previous twelve months participated. Computerized DVA with horizontal head movements at a fixed velocity of 120 deg/sec was measured and compared with the Dynamic Gait Index (DGI) a gold standard gait assessment measurement for identifying falling risk. Receiver operating characteristics (ROC) curve analysis and area under the ROC curve (AUC) were used to assess the sensitivity and specificity of the computerized DVA as a screening measure for falling risk as determined by the DGI. Results suggested a link between computerized DVA and the propensity to fall; DVA in the yaw plane was found to be a sensitive (92%) and accurate screening measure when using a cutoff logMAR value of > 0.25.

Original languageEnglish (US)
Pages (from-to)267-276
Number of pages10
JournalJournal of Vestibular Research: Equilibrium and Orientation
Volume21
Issue number5
DOIs
Publication statusPublished - Nov 25 2011

    Fingerprint

Keywords

  • Dynamic Visual Acuity
  • Falling risk
  • balance disorders
  • vestibular function test
  • vestibulo-ocular reflex

ASJC Scopus subject areas

  • Neuroscience(all)
  • Otorhinolaryngology
  • Sensory Systems
  • Clinical Neurology

Cite this