Up-regulation of MUC2 and IL-1β expression in human colonic epithelial cells by Shigella and its interaction with mucins

Radhakrishnan Prakash, Subramaniya Raja, Halagowder Devaraj, Sivasitambaram Niranjali Devaraj

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

Background: The entire gastrointestinal tract is protected by a mucous layer, which contains complex glycoproteins called mucins. MUC2 is one such mucin that protects the colonic mucosa from invading microbes. The initial interaction between microbes and mucins is an important step for microbial pathogenesis. Hence, it was of interest to investigate the relationship between host (mucin) and pathogen interaction, including Shigella induced expression of MUC2 and IL-1β during shigellosis. Methods: The mucin-Shigella interaction was revealed by an in vitro mucin-binding assay. Invasion of Shigella dysenteriae into HT-29 cells was analyzed by Transmission electron microscopy. Shigella induced mucin and IL-1β expression were analyzed by RT-PCR and Immunofluorescence. Results: The clinical isolates of Shigella were found to be virulent by a congo-red binding assay. The in vitro mucin-binding assay revealed both Shigella dysenteriae and Shigella flexneri have binding affinity in the increasing order of: guinea pig small intestinal mucin<guinea pig colonic mucin< Human colonic mucin. Invasion of Shigella dysenteriae into HT-29 cells occurs within 2 hours. Interestingly, in Shigella dysenteriae infected conditions, significant increases in mRNA expression of MUC2 and IL-1β were observed in a time dependent manner. Further, immunofluorescence analysis of MUC2 shows more positive cells in Shigella dysenteriae treated cells than untreated cells. Conclusions: Our study concludes that the Shigella species specifically binds to guinea pig colonic mucin, but not to guinea pig small intestinal mucin. The guinea pig colonic mucin showed a greater binding parameter (R), and more saturable binding, suggesting the presence of a finite number of receptor binding sites in the colonic mucin of the host. In addition, modification of mucins with TFMS and sodium metaperiodate significantly reduced mucin-bacterial binding; suggesting that the mucin-Shigella interaction occurs through carbohydrate epitopes on the mucin backbones. Overproduction of MUC2 may alter adherence and invasion of Shigella dysenteriae into human colonic epithelial cells.

Original languageEnglish (US)
Article numbere27046
JournalPloS one
Volume6
Issue number11
DOIs
StatePublished - Nov 4 2011

Fingerprint

Shigella
mucins
interleukin-1
Mucins
Interleukin-1
epithelial cells
Up-Regulation
Epithelial Cells
Shigella dysenteriae
guinea pigs
Guinea Pigs
Assays
HT29 Cells
Fluorescent Antibody Technique
fluorescent antibody technique
cells
assays
Cells
shigellosis
Bacillary Dysentery

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)

Cite this

Up-regulation of MUC2 and IL-1β expression in human colonic epithelial cells by Shigella and its interaction with mucins. / Prakash, Radhakrishnan; Raja, Subramaniya; Devaraj, Halagowder; Devaraj, Sivasitambaram Niranjali.

In: PloS one, Vol. 6, No. 11, e27046, 04.11.2011.

Research output: Contribution to journalArticle

Prakash, Radhakrishnan ; Raja, Subramaniya ; Devaraj, Halagowder ; Devaraj, Sivasitambaram Niranjali. / Up-regulation of MUC2 and IL-1β expression in human colonic epithelial cells by Shigella and its interaction with mucins. In: PloS one. 2011 ; Vol. 6, No. 11.
@article{108b168b26794b8b887630e2c8c3c08b,
title = "Up-regulation of MUC2 and IL-1β expression in human colonic epithelial cells by Shigella and its interaction with mucins",
abstract = "Background: The entire gastrointestinal tract is protected by a mucous layer, which contains complex glycoproteins called mucins. MUC2 is one such mucin that protects the colonic mucosa from invading microbes. The initial interaction between microbes and mucins is an important step for microbial pathogenesis. Hence, it was of interest to investigate the relationship between host (mucin) and pathogen interaction, including Shigella induced expression of MUC2 and IL-1β during shigellosis. Methods: The mucin-Shigella interaction was revealed by an in vitro mucin-binding assay. Invasion of Shigella dysenteriae into HT-29 cells was analyzed by Transmission electron microscopy. Shigella induced mucin and IL-1β expression were analyzed by RT-PCR and Immunofluorescence. Results: The clinical isolates of Shigella were found to be virulent by a congo-red binding assay. The in vitro mucin-binding assay revealed both Shigella dysenteriae and Shigella flexneri have binding affinity in the increasing order of: guinea pig small intestinal mucin",
author = "Radhakrishnan Prakash and Subramaniya Raja and Halagowder Devaraj and Devaraj, {Sivasitambaram Niranjali}",
year = "2011",
month = "11",
day = "4",
doi = "10.1371/journal.pone.0027046",
language = "English (US)",
volume = "6",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "11",

}

TY - JOUR

T1 - Up-regulation of MUC2 and IL-1β expression in human colonic epithelial cells by Shigella and its interaction with mucins

AU - Prakash, Radhakrishnan

AU - Raja, Subramaniya

AU - Devaraj, Halagowder

AU - Devaraj, Sivasitambaram Niranjali

PY - 2011/11/4

Y1 - 2011/11/4

N2 - Background: The entire gastrointestinal tract is protected by a mucous layer, which contains complex glycoproteins called mucins. MUC2 is one such mucin that protects the colonic mucosa from invading microbes. The initial interaction between microbes and mucins is an important step for microbial pathogenesis. Hence, it was of interest to investigate the relationship between host (mucin) and pathogen interaction, including Shigella induced expression of MUC2 and IL-1β during shigellosis. Methods: The mucin-Shigella interaction was revealed by an in vitro mucin-binding assay. Invasion of Shigella dysenteriae into HT-29 cells was analyzed by Transmission electron microscopy. Shigella induced mucin and IL-1β expression were analyzed by RT-PCR and Immunofluorescence. Results: The clinical isolates of Shigella were found to be virulent by a congo-red binding assay. The in vitro mucin-binding assay revealed both Shigella dysenteriae and Shigella flexneri have binding affinity in the increasing order of: guinea pig small intestinal mucin

AB - Background: The entire gastrointestinal tract is protected by a mucous layer, which contains complex glycoproteins called mucins. MUC2 is one such mucin that protects the colonic mucosa from invading microbes. The initial interaction between microbes and mucins is an important step for microbial pathogenesis. Hence, it was of interest to investigate the relationship between host (mucin) and pathogen interaction, including Shigella induced expression of MUC2 and IL-1β during shigellosis. Methods: The mucin-Shigella interaction was revealed by an in vitro mucin-binding assay. Invasion of Shigella dysenteriae into HT-29 cells was analyzed by Transmission electron microscopy. Shigella induced mucin and IL-1β expression were analyzed by RT-PCR and Immunofluorescence. Results: The clinical isolates of Shigella were found to be virulent by a congo-red binding assay. The in vitro mucin-binding assay revealed both Shigella dysenteriae and Shigella flexneri have binding affinity in the increasing order of: guinea pig small intestinal mucin

UR - http://www.scopus.com/inward/record.url?scp=80455150224&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=80455150224&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0027046

DO - 10.1371/journal.pone.0027046

M3 - Article

C2 - 22073249

AN - SCOPUS:80455150224

VL - 6

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 11

M1 - e27046

ER -