Ultrasonic bioreactor as a platform for studying cellular response

Anuradha Subramanian, Joseph A Turner, Gaurav Budhiraja, Sanjukta Guha Thakurta, Nicholas P. Whitney, Sai Siddhartha Nudurupati

Research output: Contribution to journalArticle

19 Scopus citations

Abstract

The need for tissue-engineered constructs as replacement tissue continues to grow as the average age of the world's population increases. However, additional research is required before the efficient production of laboratory-created tissue can be realized. The multitude of parameters that affect cell growth and proliferation is particularly daunting considering that optimized conditions are likely to change as a function of growth. Thus, a generalized research platform is needed in order for quantitative studies to be conducted. In this article, an ultrasonic bioreactor is described for use in studying the response of cells to ultrasonic stimulation. The work is focused on chondrocytes with a long-term view of generating tissue-engineered articular cartilage. Aspects of ultrasound (US) that would negatively affect cells, including temperature and cavitation, are shown to be insignificant for the US protocols used and which cover a wide range of frequencies and pressure amplitudes. The bioreactor is shown to have a positive influence on several factors, including cell proliferation, viability, and gene expression of select chondrocytic markers. Most importantly, we show that a total of 138 unique proteins are differentially expressed on exposure to ultrasonic stimulation, using mass-spectroscopy coupled proteomic analyses. We anticipate that this work will serve as the basis for additional research which will elucidate many of the mechanisms associated with cell response to ultrasonic stimulation.

Original languageEnglish (US)
Pages (from-to)244-255
Number of pages12
JournalTissue Engineering - Part C: Methods
Volume19
Issue number3
DOIs
StatePublished - Mar 1 2013

    Fingerprint

ASJC Scopus subject areas

  • Bioengineering
  • Medicine (miscellaneous)
  • Biomedical Engineering

Cite this