Transcription factor TAp73 and microRNA-449 complement each other to support multiciliogenesis

Merit Wildung, Tilman Uli Esser, Katie Baker Grausam, Cornelia Wiedwald, Larisa Volceanov-Hahn, Dietmar Riedel, Sabine Beuermann, Li Li, Jessica Zylla, Ann Kathrin Guenther, Magdalena Wienken, Evrim Ercetin, Zhiyuan Han, Felix Bremmer, Orr Shomroni, Stefan Andreas, Haotian Zhao, Muriel Lizé

Research output: Contribution to journalArticle

Abstract

Motile cilia serve vital functions in development, homeostasis, and regeneration. We recently demonstrated that TAp73 is an essential transcriptional regulator of respiratory multiciliogenesis. Here, we show that TAp73 is expressed in multiciliated cells (MCCs) of diverse tissues. Analysis of TAp73 mutant animals revealed that TAp73 regulates Foxj1, Rfx2, Rfx3, axonemal dyneins Dnali1 and Dnai1, plays a pivotal role in the generation of MCCs in male and female reproductive ducts, and contributes to fertility. However, the function of MCCs in the brain appears to be preserved despite the loss of TAp73, and robust activity of cilia-related networks is maintained in the absence of TAp73. Notably, TAp73 loss leads to distinct changes in ciliogenic microRNAs: miR34bc expression is reduced, whereas the miR449 cluster is induced in diverse multiciliated epithelia. Among different MCCs, choroid plexus (CP) epithelial cells in the brain display prominent miR449 expression, whereas brain ventricles exhibit significant increase in miR449 levels along with an increase in the activity of ciliogenic E2F4/MCIDAS circuit in TAp73 mutant animals. Conversely, E2F4 induces robust transcriptional response from miR449 genomic regions. To address whether increased miR449 levels in the brain maintain the multiciliogenesis program in the absence of TAp73, we deleted both TAp73 and miR449 in mice. Although loss of miR449 alone led to a mild ciliary defect in the CP, more pronounced ciliary defects and hydrocephalus were observed in the brain lacking both TAp73 and miR449. In contrast, miR449 loss in other MCCs failed to enhance ciliary defects associated with TAp73 loss. Together, our study shows that, in addition to the airways, TAp73 is essential for generation of MCCs in male and female reproductive ducts, whereas miR449 and TAp73 complement each other to support multiciliogenesis and CP development in the brain.

Original languageEnglish (US)
Pages (from-to)2740-2757
Number of pages18
JournalCell Death and Differentiation
Volume26
Issue number12
DOIs
StatePublished - Dec 1 2019

Fingerprint

MicroRNAs
Transcription Factors
Choroid Plexus
Brain
Cilia
Axonemal Dyneins
Hydrocephalus
Fertility
Regeneration
Homeostasis
Epithelium
Epithelial Cells

ASJC Scopus subject areas

  • Molecular Biology
  • Cell Biology

Cite this

Wildung, M., Esser, T. U., Grausam, K. B., Wiedwald, C., Volceanov-Hahn, L., Riedel, D., ... Lizé, M. (2019). Transcription factor TAp73 and microRNA-449 complement each other to support multiciliogenesis. Cell Death and Differentiation, 26(12), 2740-2757. https://doi.org/10.1038/s41418-019-0332-7

Transcription factor TAp73 and microRNA-449 complement each other to support multiciliogenesis. / Wildung, Merit; Esser, Tilman Uli; Grausam, Katie Baker; Wiedwald, Cornelia; Volceanov-Hahn, Larisa; Riedel, Dietmar; Beuermann, Sabine; Li, Li; Zylla, Jessica; Guenther, Ann Kathrin; Wienken, Magdalena; Ercetin, Evrim; Han, Zhiyuan; Bremmer, Felix; Shomroni, Orr; Andreas, Stefan; Zhao, Haotian; Lizé, Muriel.

In: Cell Death and Differentiation, Vol. 26, No. 12, 01.12.2019, p. 2740-2757.

Research output: Contribution to journalArticle

Wildung, M, Esser, TU, Grausam, KB, Wiedwald, C, Volceanov-Hahn, L, Riedel, D, Beuermann, S, Li, L, Zylla, J, Guenther, AK, Wienken, M, Ercetin, E, Han, Z, Bremmer, F, Shomroni, O, Andreas, S, Zhao, H & Lizé, M 2019, 'Transcription factor TAp73 and microRNA-449 complement each other to support multiciliogenesis', Cell Death and Differentiation, vol. 26, no. 12, pp. 2740-2757. https://doi.org/10.1038/s41418-019-0332-7
Wildung M, Esser TU, Grausam KB, Wiedwald C, Volceanov-Hahn L, Riedel D et al. Transcription factor TAp73 and microRNA-449 complement each other to support multiciliogenesis. Cell Death and Differentiation. 2019 Dec 1;26(12):2740-2757. https://doi.org/10.1038/s41418-019-0332-7
Wildung, Merit ; Esser, Tilman Uli ; Grausam, Katie Baker ; Wiedwald, Cornelia ; Volceanov-Hahn, Larisa ; Riedel, Dietmar ; Beuermann, Sabine ; Li, Li ; Zylla, Jessica ; Guenther, Ann Kathrin ; Wienken, Magdalena ; Ercetin, Evrim ; Han, Zhiyuan ; Bremmer, Felix ; Shomroni, Orr ; Andreas, Stefan ; Zhao, Haotian ; Lizé, Muriel. / Transcription factor TAp73 and microRNA-449 complement each other to support multiciliogenesis. In: Cell Death and Differentiation. 2019 ; Vol. 26, No. 12. pp. 2740-2757.
@article{b4fd070e222943a28aa7df22dcff8b62,
title = "Transcription factor TAp73 and microRNA-449 complement each other to support multiciliogenesis",
abstract = "Motile cilia serve vital functions in development, homeostasis, and regeneration. We recently demonstrated that TAp73 is an essential transcriptional regulator of respiratory multiciliogenesis. Here, we show that TAp73 is expressed in multiciliated cells (MCCs) of diverse tissues. Analysis of TAp73 mutant animals revealed that TAp73 regulates Foxj1, Rfx2, Rfx3, axonemal dyneins Dnali1 and Dnai1, plays a pivotal role in the generation of MCCs in male and female reproductive ducts, and contributes to fertility. However, the function of MCCs in the brain appears to be preserved despite the loss of TAp73, and robust activity of cilia-related networks is maintained in the absence of TAp73. Notably, TAp73 loss leads to distinct changes in ciliogenic microRNAs: miR34bc expression is reduced, whereas the miR449 cluster is induced in diverse multiciliated epithelia. Among different MCCs, choroid plexus (CP) epithelial cells in the brain display prominent miR449 expression, whereas brain ventricles exhibit significant increase in miR449 levels along with an increase in the activity of ciliogenic E2F4/MCIDAS circuit in TAp73 mutant animals. Conversely, E2F4 induces robust transcriptional response from miR449 genomic regions. To address whether increased miR449 levels in the brain maintain the multiciliogenesis program in the absence of TAp73, we deleted both TAp73 and miR449 in mice. Although loss of miR449 alone led to a mild ciliary defect in the CP, more pronounced ciliary defects and hydrocephalus were observed in the brain lacking both TAp73 and miR449. In contrast, miR449 loss in other MCCs failed to enhance ciliary defects associated with TAp73 loss. Together, our study shows that, in addition to the airways, TAp73 is essential for generation of MCCs in male and female reproductive ducts, whereas miR449 and TAp73 complement each other to support multiciliogenesis and CP development in the brain.",
author = "Merit Wildung and Esser, {Tilman Uli} and Grausam, {Katie Baker} and Cornelia Wiedwald and Larisa Volceanov-Hahn and Dietmar Riedel and Sabine Beuermann and Li Li and Jessica Zylla and Guenther, {Ann Kathrin} and Magdalena Wienken and Evrim Ercetin and Zhiyuan Han and Felix Bremmer and Orr Shomroni and Stefan Andreas and Haotian Zhao and Muriel Liz{\'e}",
year = "2019",
month = "12",
day = "1",
doi = "10.1038/s41418-019-0332-7",
language = "English (US)",
volume = "26",
pages = "2740--2757",
journal = "Cell Death and Differentiation",
issn = "1350-9047",
publisher = "Nature Publishing Group",
number = "12",

}

TY - JOUR

T1 - Transcription factor TAp73 and microRNA-449 complement each other to support multiciliogenesis

AU - Wildung, Merit

AU - Esser, Tilman Uli

AU - Grausam, Katie Baker

AU - Wiedwald, Cornelia

AU - Volceanov-Hahn, Larisa

AU - Riedel, Dietmar

AU - Beuermann, Sabine

AU - Li, Li

AU - Zylla, Jessica

AU - Guenther, Ann Kathrin

AU - Wienken, Magdalena

AU - Ercetin, Evrim

AU - Han, Zhiyuan

AU - Bremmer, Felix

AU - Shomroni, Orr

AU - Andreas, Stefan

AU - Zhao, Haotian

AU - Lizé, Muriel

PY - 2019/12/1

Y1 - 2019/12/1

N2 - Motile cilia serve vital functions in development, homeostasis, and regeneration. We recently demonstrated that TAp73 is an essential transcriptional regulator of respiratory multiciliogenesis. Here, we show that TAp73 is expressed in multiciliated cells (MCCs) of diverse tissues. Analysis of TAp73 mutant animals revealed that TAp73 regulates Foxj1, Rfx2, Rfx3, axonemal dyneins Dnali1 and Dnai1, plays a pivotal role in the generation of MCCs in male and female reproductive ducts, and contributes to fertility. However, the function of MCCs in the brain appears to be preserved despite the loss of TAp73, and robust activity of cilia-related networks is maintained in the absence of TAp73. Notably, TAp73 loss leads to distinct changes in ciliogenic microRNAs: miR34bc expression is reduced, whereas the miR449 cluster is induced in diverse multiciliated epithelia. Among different MCCs, choroid plexus (CP) epithelial cells in the brain display prominent miR449 expression, whereas brain ventricles exhibit significant increase in miR449 levels along with an increase in the activity of ciliogenic E2F4/MCIDAS circuit in TAp73 mutant animals. Conversely, E2F4 induces robust transcriptional response from miR449 genomic regions. To address whether increased miR449 levels in the brain maintain the multiciliogenesis program in the absence of TAp73, we deleted both TAp73 and miR449 in mice. Although loss of miR449 alone led to a mild ciliary defect in the CP, more pronounced ciliary defects and hydrocephalus were observed in the brain lacking both TAp73 and miR449. In contrast, miR449 loss in other MCCs failed to enhance ciliary defects associated with TAp73 loss. Together, our study shows that, in addition to the airways, TAp73 is essential for generation of MCCs in male and female reproductive ducts, whereas miR449 and TAp73 complement each other to support multiciliogenesis and CP development in the brain.

AB - Motile cilia serve vital functions in development, homeostasis, and regeneration. We recently demonstrated that TAp73 is an essential transcriptional regulator of respiratory multiciliogenesis. Here, we show that TAp73 is expressed in multiciliated cells (MCCs) of diverse tissues. Analysis of TAp73 mutant animals revealed that TAp73 regulates Foxj1, Rfx2, Rfx3, axonemal dyneins Dnali1 and Dnai1, plays a pivotal role in the generation of MCCs in male and female reproductive ducts, and contributes to fertility. However, the function of MCCs in the brain appears to be preserved despite the loss of TAp73, and robust activity of cilia-related networks is maintained in the absence of TAp73. Notably, TAp73 loss leads to distinct changes in ciliogenic microRNAs: miR34bc expression is reduced, whereas the miR449 cluster is induced in diverse multiciliated epithelia. Among different MCCs, choroid plexus (CP) epithelial cells in the brain display prominent miR449 expression, whereas brain ventricles exhibit significant increase in miR449 levels along with an increase in the activity of ciliogenic E2F4/MCIDAS circuit in TAp73 mutant animals. Conversely, E2F4 induces robust transcriptional response from miR449 genomic regions. To address whether increased miR449 levels in the brain maintain the multiciliogenesis program in the absence of TAp73, we deleted both TAp73 and miR449 in mice. Although loss of miR449 alone led to a mild ciliary defect in the CP, more pronounced ciliary defects and hydrocephalus were observed in the brain lacking both TAp73 and miR449. In contrast, miR449 loss in other MCCs failed to enhance ciliary defects associated with TAp73 loss. Together, our study shows that, in addition to the airways, TAp73 is essential for generation of MCCs in male and female reproductive ducts, whereas miR449 and TAp73 complement each other to support multiciliogenesis and CP development in the brain.

UR - http://www.scopus.com/inward/record.url?scp=85065470684&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85065470684&partnerID=8YFLogxK

U2 - 10.1038/s41418-019-0332-7

DO - 10.1038/s41418-019-0332-7

M3 - Article

C2 - 31068677

AN - SCOPUS:85065470684

VL - 26

SP - 2740

EP - 2757

JO - Cell Death and Differentiation

JF - Cell Death and Differentiation

SN - 1350-9047

IS - 12

ER -