Thermal stability of rare earth oxide coated superhydrophobic microstructured metallic surfaces

Anton Hassebrook, Michael J. Lucis, Jeffrey E. Shield, Craig Zuhlke, Troy Anderson, Dennis Alexander, George Gogos, Sidy Ndao

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

In this paper, we present a method of generating nearly superhydrophobic surfaces from Femtosecond Laser Surface Processed (FLSP) metallic substrates and the study of their thermal stability at high temperatures. Using an FLSP process, hierarchical micro/nano structures were fabricated on stainless steel 316 after which a 200 nm Cerium Oxide (CeO2) film was sputtered onto the surface. Before CeO2 deposition, the contact angle of sample was measured. Post CeO2 deposition, the contact angles were measured again. As a result of the cerium oxide deposition, the contact angle of the originally hydrophilic FLSP surface turned near superhydrophobic with an equilibrium contact angle of approximately 140°. Subsequently, the coated surfaces were annealed in air. The surface maintained its high contact angle from room temperature to about 160°C, after which it lost its hydrophobicity due to hydrocarbon burn off. For each annealing temperature, we monitored the chemical composition for the cerium oxidecoated FLSP surface using energy dispersive x-ray spectroscopy (EDS) and X-ray diffraction (XRD). Under a nitrogen rich annealing environment, the nearly superhydrophobic FLSP metallic surface maintained its high contact angle up to temperatures as high as 350°C. To further understand the physics behind the observed phenomenon, we investigated two additional samples of polished stainless steel 310 again coated with 200 nm of CeO2.

Original languageEnglish (US)
Title of host publicationASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2015, collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791856871
DOIs
StatePublished - Jan 1 2015
EventASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2015, collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems - San Francisco, United States
Duration: Jul 6 2015Jul 9 2015

Publication series

NameASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2015, collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems

Other

OtherASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2015, collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems
CountryUnited States
CitySan Francisco
Period7/6/157/9/15

Fingerprint

Oxides
Rare earths
Thermodynamic stability
Contact angle
Ultrashort pulses
Cerium
Stainless Steel
Stainless steel
Annealing
Temperature
Hydrophobicity
Hydrocarbons
Interfacial energy
Oxide films
Energy dispersive spectroscopy
Nitrogen
Physics
Spectroscopy
X ray diffraction
X rays

ASJC Scopus subject areas

  • Process Chemistry and Technology

Cite this

Hassebrook, A., Lucis, M. J., Shield, J. E., Zuhlke, C., Anderson, T., Alexander, D., ... Ndao, S. (2015). Thermal stability of rare earth oxide coated superhydrophobic microstructured metallic surfaces. In ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2015, collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems (ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2015, collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems). American Society of Mechanical Engineers. https://doi.org/10.1115/ICNMM2015-48459

Thermal stability of rare earth oxide coated superhydrophobic microstructured metallic surfaces. / Hassebrook, Anton; Lucis, Michael J.; Shield, Jeffrey E.; Zuhlke, Craig; Anderson, Troy; Alexander, Dennis; Gogos, George; Ndao, Sidy.

ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2015, collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2015. (ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2015, collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Hassebrook, A, Lucis, MJ, Shield, JE, Zuhlke, C, Anderson, T, Alexander, D, Gogos, G & Ndao, S 2015, Thermal stability of rare earth oxide coated superhydrophobic microstructured metallic surfaces. in ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2015, collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2015, collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, American Society of Mechanical Engineers, ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2015, collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, San Francisco, United States, 7/6/15. https://doi.org/10.1115/ICNMM2015-48459
Hassebrook A, Lucis MJ, Shield JE, Zuhlke C, Anderson T, Alexander D et al. Thermal stability of rare earth oxide coated superhydrophobic microstructured metallic surfaces. In ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2015, collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers. 2015. (ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2015, collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems). https://doi.org/10.1115/ICNMM2015-48459
Hassebrook, Anton ; Lucis, Michael J. ; Shield, Jeffrey E. ; Zuhlke, Craig ; Anderson, Troy ; Alexander, Dennis ; Gogos, George ; Ndao, Sidy. / Thermal stability of rare earth oxide coated superhydrophobic microstructured metallic surfaces. ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2015, collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2015. (ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2015, collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems).
@inproceedings{5abda1265e7940ed8756385b46d0c944,
title = "Thermal stability of rare earth oxide coated superhydrophobic microstructured metallic surfaces",
abstract = "In this paper, we present a method of generating nearly superhydrophobic surfaces from Femtosecond Laser Surface Processed (FLSP) metallic substrates and the study of their thermal stability at high temperatures. Using an FLSP process, hierarchical micro/nano structures were fabricated on stainless steel 316 after which a 200 nm Cerium Oxide (CeO2) film was sputtered onto the surface. Before CeO2 deposition, the contact angle of sample was measured. Post CeO2 deposition, the contact angles were measured again. As a result of the cerium oxide deposition, the contact angle of the originally hydrophilic FLSP surface turned near superhydrophobic with an equilibrium contact angle of approximately 140°. Subsequently, the coated surfaces were annealed in air. The surface maintained its high contact angle from room temperature to about 160°C, after which it lost its hydrophobicity due to hydrocarbon burn off. For each annealing temperature, we monitored the chemical composition for the cerium oxidecoated FLSP surface using energy dispersive x-ray spectroscopy (EDS) and X-ray diffraction (XRD). Under a nitrogen rich annealing environment, the nearly superhydrophobic FLSP metallic surface maintained its high contact angle up to temperatures as high as 350°C. To further understand the physics behind the observed phenomenon, we investigated two additional samples of polished stainless steel 310 again coated with 200 nm of CeO2.",
author = "Anton Hassebrook and Lucis, {Michael J.} and Shield, {Jeffrey E.} and Craig Zuhlke and Troy Anderson and Dennis Alexander and George Gogos and Sidy Ndao",
year = "2015",
month = "1",
day = "1",
doi = "10.1115/ICNMM2015-48459",
language = "English (US)",
series = "ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2015, collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems",
publisher = "American Society of Mechanical Engineers",
booktitle = "ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2015, collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems",

}

TY - GEN

T1 - Thermal stability of rare earth oxide coated superhydrophobic microstructured metallic surfaces

AU - Hassebrook, Anton

AU - Lucis, Michael J.

AU - Shield, Jeffrey E.

AU - Zuhlke, Craig

AU - Anderson, Troy

AU - Alexander, Dennis

AU - Gogos, George

AU - Ndao, Sidy

PY - 2015/1/1

Y1 - 2015/1/1

N2 - In this paper, we present a method of generating nearly superhydrophobic surfaces from Femtosecond Laser Surface Processed (FLSP) metallic substrates and the study of their thermal stability at high temperatures. Using an FLSP process, hierarchical micro/nano structures were fabricated on stainless steel 316 after which a 200 nm Cerium Oxide (CeO2) film was sputtered onto the surface. Before CeO2 deposition, the contact angle of sample was measured. Post CeO2 deposition, the contact angles were measured again. As a result of the cerium oxide deposition, the contact angle of the originally hydrophilic FLSP surface turned near superhydrophobic with an equilibrium contact angle of approximately 140°. Subsequently, the coated surfaces were annealed in air. The surface maintained its high contact angle from room temperature to about 160°C, after which it lost its hydrophobicity due to hydrocarbon burn off. For each annealing temperature, we monitored the chemical composition for the cerium oxidecoated FLSP surface using energy dispersive x-ray spectroscopy (EDS) and X-ray diffraction (XRD). Under a nitrogen rich annealing environment, the nearly superhydrophobic FLSP metallic surface maintained its high contact angle up to temperatures as high as 350°C. To further understand the physics behind the observed phenomenon, we investigated two additional samples of polished stainless steel 310 again coated with 200 nm of CeO2.

AB - In this paper, we present a method of generating nearly superhydrophobic surfaces from Femtosecond Laser Surface Processed (FLSP) metallic substrates and the study of their thermal stability at high temperatures. Using an FLSP process, hierarchical micro/nano structures were fabricated on stainless steel 316 after which a 200 nm Cerium Oxide (CeO2) film was sputtered onto the surface. Before CeO2 deposition, the contact angle of sample was measured. Post CeO2 deposition, the contact angles were measured again. As a result of the cerium oxide deposition, the contact angle of the originally hydrophilic FLSP surface turned near superhydrophobic with an equilibrium contact angle of approximately 140°. Subsequently, the coated surfaces were annealed in air. The surface maintained its high contact angle from room temperature to about 160°C, after which it lost its hydrophobicity due to hydrocarbon burn off. For each annealing temperature, we monitored the chemical composition for the cerium oxidecoated FLSP surface using energy dispersive x-ray spectroscopy (EDS) and X-ray diffraction (XRD). Under a nitrogen rich annealing environment, the nearly superhydrophobic FLSP metallic surface maintained its high contact angle up to temperatures as high as 350°C. To further understand the physics behind the observed phenomenon, we investigated two additional samples of polished stainless steel 310 again coated with 200 nm of CeO2.

UR - http://www.scopus.com/inward/record.url?scp=84980042464&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84980042464&partnerID=8YFLogxK

U2 - 10.1115/ICNMM2015-48459

DO - 10.1115/ICNMM2015-48459

M3 - Conference contribution

AN - SCOPUS:84980042464

T3 - ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2015, collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems

BT - ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2015, collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems

PB - American Society of Mechanical Engineers

ER -