Theoretical model of the laser imaging of small aerosols

Applications to aerosol sizing

S. A. Schaub, Dennis R Alexander, J. P. Barton

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

A theoretical model is presented for the formation of small-particle shadow images in a single-lens laserimaging system. The model uses a modification of classical Lorenz-Mie theory, presented by the authors in an earlier paper, to calculate the external electromagnetic fields resulting from the interaction of a Gaussian laser beam with a finite absorbing spherical particle. Propagation of the electric field through the imaging system components is developed from a scalar viewpoint using the thin-lens transformation and the Fresnel approximation to the Huygens-Fresnel propagation equation. The theoretical model is valid for either transparent or absorbing spheres and has no restrictions on the allowable degree or direction of aerosol defocus. Direct comparisons between theoretical calculations and experimental observations are reported for 53-m-diameter transparent water droplets and 66-^m-diameter absorbing nickel spheres for defocus ranging from —2 mm (toward the lens) to +2 mm (away from the lens). Theory and experiment showed good agreement in the boundary edge gradient and the location of the external peaks, while observable differences existed in the magnitude of the central spots. Theoretical results, comparing water and nickel aerosols, showed observable differences in the calculated average internal intensity (All). In contrast, the boundary edge gradient showed less dependence on changes in the optical properties of the particle. These results indicate that criteria, such as the All, used in focus determination must be reevaluated when applying in-focus sizing algorithms to aerosols with significantly different optical properties.

Original languageEnglish (US)
Pages (from-to)4777-4784
Number of pages8
JournalApplied Optics
Volume30
Issue number33
DOIs
StatePublished - Nov 20 1991

Fingerprint

sizing
Aerosols
Lenses
aerosols
lenses
Imaging techniques
Lasers
lasers
Optical properties
Nickel
nickel
optical properties
gradients
propagation
Mie scattering
Imaging systems
Electromagnetic fields
water
Laser beams
Water

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Cite this

Theoretical model of the laser imaging of small aerosols : Applications to aerosol sizing. / Schaub, S. A.; Alexander, Dennis R; Barton, J. P.

In: Applied Optics, Vol. 30, No. 33, 20.11.1991, p. 4777-4784.

Research output: Contribution to journalArticle

@article{05fd685d636c4029a865999b8cb87e94,
title = "Theoretical model of the laser imaging of small aerosols: Applications to aerosol sizing",
abstract = "A theoretical model is presented for the formation of small-particle shadow images in a single-lens laserimaging system. The model uses a modification of classical Lorenz-Mie theory, presented by the authors in an earlier paper, to calculate the external electromagnetic fields resulting from the interaction of a Gaussian laser beam with a finite absorbing spherical particle. Propagation of the electric field through the imaging system components is developed from a scalar viewpoint using the thin-lens transformation and the Fresnel approximation to the Huygens-Fresnel propagation equation. The theoretical model is valid for either transparent or absorbing spheres and has no restrictions on the allowable degree or direction of aerosol defocus. Direct comparisons between theoretical calculations and experimental observations are reported for 53-m-diameter transparent water droplets and 66-^m-diameter absorbing nickel spheres for defocus ranging from —2 mm (toward the lens) to +2 mm (away from the lens). Theory and experiment showed good agreement in the boundary edge gradient and the location of the external peaks, while observable differences existed in the magnitude of the central spots. Theoretical results, comparing water and nickel aerosols, showed observable differences in the calculated average internal intensity (All). In contrast, the boundary edge gradient showed less dependence on changes in the optical properties of the particle. These results indicate that criteria, such as the All, used in focus determination must be reevaluated when applying in-focus sizing algorithms to aerosols with significantly different optical properties.",
author = "Schaub, {S. A.} and Alexander, {Dennis R} and Barton, {J. P.}",
year = "1991",
month = "11",
day = "20",
doi = "10.1364/AO.30.004777",
language = "English (US)",
volume = "30",
pages = "4777--4784",
journal = "Applied Optics",
issn = "1559-128X",
publisher = "The Optical Society",
number = "33",

}

TY - JOUR

T1 - Theoretical model of the laser imaging of small aerosols

T2 - Applications to aerosol sizing

AU - Schaub, S. A.

AU - Alexander, Dennis R

AU - Barton, J. P.

PY - 1991/11/20

Y1 - 1991/11/20

N2 - A theoretical model is presented for the formation of small-particle shadow images in a single-lens laserimaging system. The model uses a modification of classical Lorenz-Mie theory, presented by the authors in an earlier paper, to calculate the external electromagnetic fields resulting from the interaction of a Gaussian laser beam with a finite absorbing spherical particle. Propagation of the electric field through the imaging system components is developed from a scalar viewpoint using the thin-lens transformation and the Fresnel approximation to the Huygens-Fresnel propagation equation. The theoretical model is valid for either transparent or absorbing spheres and has no restrictions on the allowable degree or direction of aerosol defocus. Direct comparisons between theoretical calculations and experimental observations are reported for 53-m-diameter transparent water droplets and 66-^m-diameter absorbing nickel spheres for defocus ranging from —2 mm (toward the lens) to +2 mm (away from the lens). Theory and experiment showed good agreement in the boundary edge gradient and the location of the external peaks, while observable differences existed in the magnitude of the central spots. Theoretical results, comparing water and nickel aerosols, showed observable differences in the calculated average internal intensity (All). In contrast, the boundary edge gradient showed less dependence on changes in the optical properties of the particle. These results indicate that criteria, such as the All, used in focus determination must be reevaluated when applying in-focus sizing algorithms to aerosols with significantly different optical properties.

AB - A theoretical model is presented for the formation of small-particle shadow images in a single-lens laserimaging system. The model uses a modification of classical Lorenz-Mie theory, presented by the authors in an earlier paper, to calculate the external electromagnetic fields resulting from the interaction of a Gaussian laser beam with a finite absorbing spherical particle. Propagation of the electric field through the imaging system components is developed from a scalar viewpoint using the thin-lens transformation and the Fresnel approximation to the Huygens-Fresnel propagation equation. The theoretical model is valid for either transparent or absorbing spheres and has no restrictions on the allowable degree or direction of aerosol defocus. Direct comparisons between theoretical calculations and experimental observations are reported for 53-m-diameter transparent water droplets and 66-^m-diameter absorbing nickel spheres for defocus ranging from —2 mm (toward the lens) to +2 mm (away from the lens). Theory and experiment showed good agreement in the boundary edge gradient and the location of the external peaks, while observable differences existed in the magnitude of the central spots. Theoretical results, comparing water and nickel aerosols, showed observable differences in the calculated average internal intensity (All). In contrast, the boundary edge gradient showed less dependence on changes in the optical properties of the particle. These results indicate that criteria, such as the All, used in focus determination must be reevaluated when applying in-focus sizing algorithms to aerosols with significantly different optical properties.

UR - http://www.scopus.com/inward/record.url?scp=84975624621&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84975624621&partnerID=8YFLogxK

U2 - 10.1364/AO.30.004777

DO - 10.1364/AO.30.004777

M3 - Article

VL - 30

SP - 4777

EP - 4784

JO - Applied Optics

JF - Applied Optics

SN - 1559-128X

IS - 33

ER -