The termini of VSV DI particle RNAs are sufficient to signal RNA encapsidation, replication, and budding to generate infectious particles

Asit K. Pattnaik, L. Andrew Ball, Alison Legrone, Gail W. Wertz

Research output: Contribution to journalArticle

68 Citations (Scopus)

Abstract

Infectious defective interfering (DI) particles of the negative-stranded RNA virus vesicular stomatitis virus (VSV) havebeen recovered from negative-sense transcripts of a plasmid that contains a full-length cDNA derived from the DI-T particle genome. In order to determine the cis-acting sequences necessary for RNA replication, encapsidation, and budding and to approximate the minimal size of RNA that can be packaged into infectious particles, we constructed a series of internal deletions in the DI cDNA to generate plasmids that could be transcribed to yield RNAs which ranged in size from 2209 nucleotides down to 102 nucleotides. All the deletion plasmids retained at least 36 nucleotides from the 5′-terminus and 51 nucleotides from the 3′-terminus of the DI genome. In cells expressing the five VSV proteins, the deleted DI RNAs were examined for their ability to be encapsidated, to replicate, and to bud to produce infectious DI particles. An RNA as small as 191 nucleotides, which contained 46 nucleotides from the 5′-end and 145 nucleotides from the 3′-end of the DI genome was encapsidated, replicated, and budded at least as efficiently as the full-length wild-type DI RNA. In contrast, a 102-nucleotide RNA that contained only the 51 nucleotides from the 5′-end of the DI RNA and its perfect 51-nucleotide complement at the 3′-end replicated poorly and failed to bud infectious DI particles. However, an RNA with an insertion of 1499-nucleotide "stuffer" sequences of non-VSV origin between the two 51-nucleotide complementary termini not only replicated but also budded infectious particles. These data show that the signals necessary for RNA encapsidation, replication, and packaging into infectious DI particles are contained within the 5′-terminal 36 nucleotides and the 3′-terminal 51 nucleotides of the DI RNA genome. Furthermore, the results show that a heterologous sequence can be replicated and packaged into infectious particles if it is flanked by the DI RNA termini.

Original languageEnglish (US)
Pages (from-to)760-764
Number of pages5
JournalVirology
Volume206
Issue number1
DOIs
StatePublished - Jan 10 1995

Fingerprint

Defective Viruses
Vesicular Stomatitis
Nucleotides
RNA
Viruses
Genome
Plasmids
Complementary DNA
Stomatitis
Complement C3
RNA Viruses
Product Packaging

ASJC Scopus subject areas

  • Virology

Cite this

The termini of VSV DI particle RNAs are sufficient to signal RNA encapsidation, replication, and budding to generate infectious particles. / Pattnaik, Asit K.; Ball, L. Andrew; Legrone, Alison; Wertz, Gail W.

In: Virology, Vol. 206, No. 1, 10.01.1995, p. 760-764.

Research output: Contribution to journalArticle

@article{7cd68bc2e276443990cbb2ca96344453,
title = "The termini of VSV DI particle RNAs are sufficient to signal RNA encapsidation, replication, and budding to generate infectious particles",
abstract = "Infectious defective interfering (DI) particles of the negative-stranded RNA virus vesicular stomatitis virus (VSV) havebeen recovered from negative-sense transcripts of a plasmid that contains a full-length cDNA derived from the DI-T particle genome. In order to determine the cis-acting sequences necessary for RNA replication, encapsidation, and budding and to approximate the minimal size of RNA that can be packaged into infectious particles, we constructed a series of internal deletions in the DI cDNA to generate plasmids that could be transcribed to yield RNAs which ranged in size from 2209 nucleotides down to 102 nucleotides. All the deletion plasmids retained at least 36 nucleotides from the 5′-terminus and 51 nucleotides from the 3′-terminus of the DI genome. In cells expressing the five VSV proteins, the deleted DI RNAs were examined for their ability to be encapsidated, to replicate, and to bud to produce infectious DI particles. An RNA as small as 191 nucleotides, which contained 46 nucleotides from the 5′-end and 145 nucleotides from the 3′-end of the DI genome was encapsidated, replicated, and budded at least as efficiently as the full-length wild-type DI RNA. In contrast, a 102-nucleotide RNA that contained only the 51 nucleotides from the 5′-end of the DI RNA and its perfect 51-nucleotide complement at the 3′-end replicated poorly and failed to bud infectious DI particles. However, an RNA with an insertion of 1499-nucleotide {"}stuffer{"} sequences of non-VSV origin between the two 51-nucleotide complementary termini not only replicated but also budded infectious particles. These data show that the signals necessary for RNA encapsidation, replication, and packaging into infectious DI particles are contained within the 5′-terminal 36 nucleotides and the 3′-terminal 51 nucleotides of the DI RNA genome. Furthermore, the results show that a heterologous sequence can be replicated and packaged into infectious particles if it is flanked by the DI RNA termini.",
author = "Pattnaik, {Asit K.} and Ball, {L. Andrew} and Alison Legrone and Wertz, {Gail W.}",
year = "1995",
month = "1",
day = "10",
doi = "10.1016/S0042-6822(95)80005-0",
language = "English (US)",
volume = "206",
pages = "760--764",
journal = "Virology",
issn = "0042-6822",
publisher = "Academic Press Inc.",
number = "1",

}

TY - JOUR

T1 - The termini of VSV DI particle RNAs are sufficient to signal RNA encapsidation, replication, and budding to generate infectious particles

AU - Pattnaik, Asit K.

AU - Ball, L. Andrew

AU - Legrone, Alison

AU - Wertz, Gail W.

PY - 1995/1/10

Y1 - 1995/1/10

N2 - Infectious defective interfering (DI) particles of the negative-stranded RNA virus vesicular stomatitis virus (VSV) havebeen recovered from negative-sense transcripts of a plasmid that contains a full-length cDNA derived from the DI-T particle genome. In order to determine the cis-acting sequences necessary for RNA replication, encapsidation, and budding and to approximate the minimal size of RNA that can be packaged into infectious particles, we constructed a series of internal deletions in the DI cDNA to generate plasmids that could be transcribed to yield RNAs which ranged in size from 2209 nucleotides down to 102 nucleotides. All the deletion plasmids retained at least 36 nucleotides from the 5′-terminus and 51 nucleotides from the 3′-terminus of the DI genome. In cells expressing the five VSV proteins, the deleted DI RNAs were examined for their ability to be encapsidated, to replicate, and to bud to produce infectious DI particles. An RNA as small as 191 nucleotides, which contained 46 nucleotides from the 5′-end and 145 nucleotides from the 3′-end of the DI genome was encapsidated, replicated, and budded at least as efficiently as the full-length wild-type DI RNA. In contrast, a 102-nucleotide RNA that contained only the 51 nucleotides from the 5′-end of the DI RNA and its perfect 51-nucleotide complement at the 3′-end replicated poorly and failed to bud infectious DI particles. However, an RNA with an insertion of 1499-nucleotide "stuffer" sequences of non-VSV origin between the two 51-nucleotide complementary termini not only replicated but also budded infectious particles. These data show that the signals necessary for RNA encapsidation, replication, and packaging into infectious DI particles are contained within the 5′-terminal 36 nucleotides and the 3′-terminal 51 nucleotides of the DI RNA genome. Furthermore, the results show that a heterologous sequence can be replicated and packaged into infectious particles if it is flanked by the DI RNA termini.

AB - Infectious defective interfering (DI) particles of the negative-stranded RNA virus vesicular stomatitis virus (VSV) havebeen recovered from negative-sense transcripts of a plasmid that contains a full-length cDNA derived from the DI-T particle genome. In order to determine the cis-acting sequences necessary for RNA replication, encapsidation, and budding and to approximate the minimal size of RNA that can be packaged into infectious particles, we constructed a series of internal deletions in the DI cDNA to generate plasmids that could be transcribed to yield RNAs which ranged in size from 2209 nucleotides down to 102 nucleotides. All the deletion plasmids retained at least 36 nucleotides from the 5′-terminus and 51 nucleotides from the 3′-terminus of the DI genome. In cells expressing the five VSV proteins, the deleted DI RNAs were examined for their ability to be encapsidated, to replicate, and to bud to produce infectious DI particles. An RNA as small as 191 nucleotides, which contained 46 nucleotides from the 5′-end and 145 nucleotides from the 3′-end of the DI genome was encapsidated, replicated, and budded at least as efficiently as the full-length wild-type DI RNA. In contrast, a 102-nucleotide RNA that contained only the 51 nucleotides from the 5′-end of the DI RNA and its perfect 51-nucleotide complement at the 3′-end replicated poorly and failed to bud infectious DI particles. However, an RNA with an insertion of 1499-nucleotide "stuffer" sequences of non-VSV origin between the two 51-nucleotide complementary termini not only replicated but also budded infectious particles. These data show that the signals necessary for RNA encapsidation, replication, and packaging into infectious DI particles are contained within the 5′-terminal 36 nucleotides and the 3′-terminal 51 nucleotides of the DI RNA genome. Furthermore, the results show that a heterologous sequence can be replicated and packaged into infectious particles if it is flanked by the DI RNA termini.

UR - http://www.scopus.com/inward/record.url?scp=0028850828&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0028850828&partnerID=8YFLogxK

U2 - 10.1016/S0042-6822(95)80005-0

DO - 10.1016/S0042-6822(95)80005-0

M3 - Article

C2 - 7831839

AN - SCOPUS:0028850828

VL - 206

SP - 760

EP - 764

JO - Virology

JF - Virology

SN - 0042-6822

IS - 1

ER -