The Sulfolipids 2′-O-Acyl-Sulfoquinovosyldiacylglycerol and Sulfoquinovosyldiacylglycerol Are Absent from a Chlamydomonas reinhardtii Mutant Deleted in SQD1

Wayne R. Riekhof, Michael E. Ruckle, Todd A. Lydic, Barbara B. Sears, Christoph Benning

Research output: Contribution to journalArticle

60 Citations (Scopus)

Abstract

The biosynthesis of thylakoid lipids in eukaryotic photosynthetic organisms often involves enzymes in the endoplasmic reticulum (ER) and the chloroplast envelopes. Two pathways of thylakoid lipid biosynthesis, the ER and the plastid pathways, are present in parallel in many species, including Arabidopsis, but in other plants, e.g. grasses, only the ER pathway is active. The unicellular alga Chlamydomonas reinhardtii diverges from plants like Arabidopsis in a different way because its membranes do not contain phosphatidylcholine, and most thylakoid lipids are derived from the plastid pathway. Here, we describe an acylated derivative of sulfolipid, 2′-O-acyl-sulfoquinovosyldiacylglycerol (ASQD), which is present in C. reinhardtii. Although the fatty acids of sulfoquinovosyldiacylglycerol (SQDG) were mostly saturated, ASQD molecular species carried predominantly unsaturated fatty acids. Moreover, directly attached to the head group of ASQD was preferentially an 18-carbon fatty acid with four double bonds. High-throughput robotic screening led to the isolation of a plasmid disruption mutant of C. reinhardtii, designated Δsqd1, which lacks ASQD as well as SQDG. In this mutant, the SQD1 ortholog was completely deleted and replaced by plasmid sequences. It is proposed that ASQD arises from the sugar nucleotide pathway of sulfolipid biosynthesis by acylation of the 2′-hydroxyl of the sulfoquinovosyl head group. At the physiological level, the mutant showed increased sensitivity to a diuron herbicide and reduced growth under phosphate limitation, suggesting a role for SQDG and/or ASQD in photosynthesis as conducted by C. reinhardtii, particularly under phosphate-limited conditions.

Original languageEnglish (US)
Pages (from-to)864-874
Number of pages11
JournalPlant physiology
Volume133
Issue number2
DOIs
StatePublished - Oct 1 2003

Fingerprint

Chlamydomonas reinhardtii
Thylakoids
thylakoids
Endoplasmic Reticulum
endoplasmic reticulum
mutants
Plastids
biosynthesis
Lipids
Arabidopsis
algae
plastids
plasmids
Plasmids
Fatty Acids
lipids
Phosphates
phosphates
Diuron
fatty acids

ASJC Scopus subject areas

  • Physiology
  • Genetics
  • Plant Science

Cite this

The Sulfolipids 2′-O-Acyl-Sulfoquinovosyldiacylglycerol and Sulfoquinovosyldiacylglycerol Are Absent from a Chlamydomonas reinhardtii Mutant Deleted in SQD1. / Riekhof, Wayne R.; Ruckle, Michael E.; Lydic, Todd A.; Sears, Barbara B.; Benning, Christoph.

In: Plant physiology, Vol. 133, No. 2, 01.10.2003, p. 864-874.

Research output: Contribution to journalArticle

@article{fdf75a4ff22944189f42936677619e8a,
title = "The Sulfolipids 2′-O-Acyl-Sulfoquinovosyldiacylglycerol and Sulfoquinovosyldiacylglycerol Are Absent from a Chlamydomonas reinhardtii Mutant Deleted in SQD1",
abstract = "The biosynthesis of thylakoid lipids in eukaryotic photosynthetic organisms often involves enzymes in the endoplasmic reticulum (ER) and the chloroplast envelopes. Two pathways of thylakoid lipid biosynthesis, the ER and the plastid pathways, are present in parallel in many species, including Arabidopsis, but in other plants, e.g. grasses, only the ER pathway is active. The unicellular alga Chlamydomonas reinhardtii diverges from plants like Arabidopsis in a different way because its membranes do not contain phosphatidylcholine, and most thylakoid lipids are derived from the plastid pathway. Here, we describe an acylated derivative of sulfolipid, 2′-O-acyl-sulfoquinovosyldiacylglycerol (ASQD), which is present in C. reinhardtii. Although the fatty acids of sulfoquinovosyldiacylglycerol (SQDG) were mostly saturated, ASQD molecular species carried predominantly unsaturated fatty acids. Moreover, directly attached to the head group of ASQD was preferentially an 18-carbon fatty acid with four double bonds. High-throughput robotic screening led to the isolation of a plasmid disruption mutant of C. reinhardtii, designated Δsqd1, which lacks ASQD as well as SQDG. In this mutant, the SQD1 ortholog was completely deleted and replaced by plasmid sequences. It is proposed that ASQD arises from the sugar nucleotide pathway of sulfolipid biosynthesis by acylation of the 2′-hydroxyl of the sulfoquinovosyl head group. At the physiological level, the mutant showed increased sensitivity to a diuron herbicide and reduced growth under phosphate limitation, suggesting a role for SQDG and/or ASQD in photosynthesis as conducted by C. reinhardtii, particularly under phosphate-limited conditions.",
author = "Riekhof, {Wayne R.} and Ruckle, {Michael E.} and Lydic, {Todd A.} and Sears, {Barbara B.} and Christoph Benning",
year = "2003",
month = "10",
day = "1",
doi = "10.1104/pp.103.029249",
language = "English (US)",
volume = "133",
pages = "864--874",
journal = "Plant Physiology",
issn = "0032-0889",
publisher = "American Society of Plant Biologists",
number = "2",

}

TY - JOUR

T1 - The Sulfolipids 2′-O-Acyl-Sulfoquinovosyldiacylglycerol and Sulfoquinovosyldiacylglycerol Are Absent from a Chlamydomonas reinhardtii Mutant Deleted in SQD1

AU - Riekhof, Wayne R.

AU - Ruckle, Michael E.

AU - Lydic, Todd A.

AU - Sears, Barbara B.

AU - Benning, Christoph

PY - 2003/10/1

Y1 - 2003/10/1

N2 - The biosynthesis of thylakoid lipids in eukaryotic photosynthetic organisms often involves enzymes in the endoplasmic reticulum (ER) and the chloroplast envelopes. Two pathways of thylakoid lipid biosynthesis, the ER and the plastid pathways, are present in parallel in many species, including Arabidopsis, but in other plants, e.g. grasses, only the ER pathway is active. The unicellular alga Chlamydomonas reinhardtii diverges from plants like Arabidopsis in a different way because its membranes do not contain phosphatidylcholine, and most thylakoid lipids are derived from the plastid pathway. Here, we describe an acylated derivative of sulfolipid, 2′-O-acyl-sulfoquinovosyldiacylglycerol (ASQD), which is present in C. reinhardtii. Although the fatty acids of sulfoquinovosyldiacylglycerol (SQDG) were mostly saturated, ASQD molecular species carried predominantly unsaturated fatty acids. Moreover, directly attached to the head group of ASQD was preferentially an 18-carbon fatty acid with four double bonds. High-throughput robotic screening led to the isolation of a plasmid disruption mutant of C. reinhardtii, designated Δsqd1, which lacks ASQD as well as SQDG. In this mutant, the SQD1 ortholog was completely deleted and replaced by plasmid sequences. It is proposed that ASQD arises from the sugar nucleotide pathway of sulfolipid biosynthesis by acylation of the 2′-hydroxyl of the sulfoquinovosyl head group. At the physiological level, the mutant showed increased sensitivity to a diuron herbicide and reduced growth under phosphate limitation, suggesting a role for SQDG and/or ASQD in photosynthesis as conducted by C. reinhardtii, particularly under phosphate-limited conditions.

AB - The biosynthesis of thylakoid lipids in eukaryotic photosynthetic organisms often involves enzymes in the endoplasmic reticulum (ER) and the chloroplast envelopes. Two pathways of thylakoid lipid biosynthesis, the ER and the plastid pathways, are present in parallel in many species, including Arabidopsis, but in other plants, e.g. grasses, only the ER pathway is active. The unicellular alga Chlamydomonas reinhardtii diverges from plants like Arabidopsis in a different way because its membranes do not contain phosphatidylcholine, and most thylakoid lipids are derived from the plastid pathway. Here, we describe an acylated derivative of sulfolipid, 2′-O-acyl-sulfoquinovosyldiacylglycerol (ASQD), which is present in C. reinhardtii. Although the fatty acids of sulfoquinovosyldiacylglycerol (SQDG) were mostly saturated, ASQD molecular species carried predominantly unsaturated fatty acids. Moreover, directly attached to the head group of ASQD was preferentially an 18-carbon fatty acid with four double bonds. High-throughput robotic screening led to the isolation of a plasmid disruption mutant of C. reinhardtii, designated Δsqd1, which lacks ASQD as well as SQDG. In this mutant, the SQD1 ortholog was completely deleted and replaced by plasmid sequences. It is proposed that ASQD arises from the sugar nucleotide pathway of sulfolipid biosynthesis by acylation of the 2′-hydroxyl of the sulfoquinovosyl head group. At the physiological level, the mutant showed increased sensitivity to a diuron herbicide and reduced growth under phosphate limitation, suggesting a role for SQDG and/or ASQD in photosynthesis as conducted by C. reinhardtii, particularly under phosphate-limited conditions.

UR - http://www.scopus.com/inward/record.url?scp=0142152446&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0142152446&partnerID=8YFLogxK

U2 - 10.1104/pp.103.029249

DO - 10.1104/pp.103.029249

M3 - Article

C2 - 14500794

AN - SCOPUS:0142152446

VL - 133

SP - 864

EP - 874

JO - Plant Physiology

JF - Plant Physiology

SN - 0032-0889

IS - 2

ER -