The e-incubator: A magnetic resonance imaging-compatible mini incubator

Shadi F. Othman, Karin Wartella, Vahid Khalilzad Sharghi, Huihui Xu

Research output: Contribution to journalArticle

5 Scopus citations

Abstract

The tissue engineering community has been vocal regarding the need for noninvasive instruments to assess the development of tissue-engineered constructs. Medical imaging has helped fulfill this role. However, specimens allocated to a test tube for imaging cannot be tested for a prolonged period or returned to the incubator. Therefore, samples are essentially wasted due to potential contamination and transfer in a less than optimal growth environment. In turn, we present a standalone, miniature, magnetic resonance imaging-compatible incubator, termed the e-incubator. This incubator uses a microcontroller unit to automatically sense and regulate physiological conditions for tissue culture, thus allowing for concurrent tissue culture and evaluation. The e-incubator also offers an innovative scheme to study underlying mechanisms related to the structural and functional evolution of tissues. Importantly, it offers a key step toward enabling real-time testing of engineered tissues before human transplantation. For validation purposes, we cultured tissue-engineered bone constructs for 4 weeks to test the e-incubator. Importantly, this technology allows for visualizing the evolution of temporal and spatial morphogenesis. In turn, the e-incubator can filter deficient constructs, thereby increasing the success rate of implantation of tissue-engineered constructs, especially as construct design grows in levels of complexity to match the geometry and function of patients' unique needs.

Original languageEnglish (US)
Pages (from-to)347-355
Number of pages9
JournalTissue Engineering - Part C: Methods
Volume21
Issue number4
DOIs
Publication statusPublished - Apr 1 2015

    Fingerprint

ASJC Scopus subject areas

  • Bioengineering
  • Medicine (miscellaneous)
  • Biomedical Engineering

Cite this