The cytidine deaminase AID exhibits similar functional properties in yeast and mammals

Igor B. Rogozin, Youri I Pavlov

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

A recent work published in Molecular Immunology examined the editing activity of activation-induced deaminase (AID) in yeast (Krause, K., Marcu, K.B., Greeve, J., 2006. The cytidine deaminases AID and APOBEC-1 exhibit distinct functional properties in a novel yeast selectable system. Mol. Immunol.). It was proposed that expression of AID in yeast is not sufficient for the generation of point mutations in a highly transcribed gene due to the lack of cofactors for AID-induced somatic hypermutation, which are unique to B cells. It was suggested that, on its own, AID does not have an intrinsic specificity for its target sequences. However, it has been shown previously that expression of the human AID gene in yeast was moderately mutagenic in a wild-type strain and highly mutagenic in an ung1 uracil-DNA glycosylase-deficient strain (Mayorov, V.I., Rogozin, I.B., Adkison, L.R., Frahm, C.R., Kunkel T.A., Pavlov Y. I., 2005. Expression of human AID in yeast induces mutations in context similar to the context of somatic hypermutation at G-C pairs in immunoglobulin genes. BMC Immunol. 6, 10; Poltoratsky, V.P., Wilson, S.H., Kunkel, T.A., Pavlov, Y.I., 2004. Recombinogenic phenotype of human activation-induced cytosine deaminase. J. Immunol. 172, 4308-4313). The vast majority of mutations were at G-C pairs. Mutations showed a clear DNA sequence context specificity which resembled the specificity of somatic hypermutation at G-C pairs in immunoglobulin genes and AID mutation specificity in vitro. The inability to detect mutator effects of AID by Krause et al. is likely to be caused by the use of the wild-type yeast strain and a small sample of clones examined for the presence of mutations. In addition, we show that non-uniformity of the mutation hotspot distribution is a factor potentially decreasing the chances of detecting mutations.

Original languageEnglish (US)
Pages (from-to)1481-1484
Number of pages4
JournalMolecular Immunology
Volume43
Issue number9
DOIs
StatePublished - Mar 1 2006

Fingerprint

Cytidine Deaminase
Mammals
Yeasts
Mutation
Immunoglobulin Genes
Uracil-DNA Glycosidase
AICDA (activation-induced cytidine deaminase)
Allergy and Immunology
Point Mutation
Transcriptional Activation
Genes
B-Lymphocytes
Clone Cells

Keywords

  • DNA context
  • Mutation frequency
  • Mutation hotspots
  • Polynucleotide (deoxy)cytidine deaminase
  • Somatic hypermutation

ASJC Scopus subject areas

  • Immunology
  • Molecular Biology

Cite this

The cytidine deaminase AID exhibits similar functional properties in yeast and mammals. / Rogozin, Igor B.; Pavlov, Youri I.

In: Molecular Immunology, Vol. 43, No. 9, 01.03.2006, p. 1481-1484.

Research output: Contribution to journalArticle

@article{30e9611d6d76484ba398cd72bb46b82d,
title = "The cytidine deaminase AID exhibits similar functional properties in yeast and mammals",
abstract = "A recent work published in Molecular Immunology examined the editing activity of activation-induced deaminase (AID) in yeast (Krause, K., Marcu, K.B., Greeve, J., 2006. The cytidine deaminases AID and APOBEC-1 exhibit distinct functional properties in a novel yeast selectable system. Mol. Immunol.). It was proposed that expression of AID in yeast is not sufficient for the generation of point mutations in a highly transcribed gene due to the lack of cofactors for AID-induced somatic hypermutation, which are unique to B cells. It was suggested that, on its own, AID does not have an intrinsic specificity for its target sequences. However, it has been shown previously that expression of the human AID gene in yeast was moderately mutagenic in a wild-type strain and highly mutagenic in an ung1 uracil-DNA glycosylase-deficient strain (Mayorov, V.I., Rogozin, I.B., Adkison, L.R., Frahm, C.R., Kunkel T.A., Pavlov Y. I., 2005. Expression of human AID in yeast induces mutations in context similar to the context of somatic hypermutation at G-C pairs in immunoglobulin genes. BMC Immunol. 6, 10; Poltoratsky, V.P., Wilson, S.H., Kunkel, T.A., Pavlov, Y.I., 2004. Recombinogenic phenotype of human activation-induced cytosine deaminase. J. Immunol. 172, 4308-4313). The vast majority of mutations were at G-C pairs. Mutations showed a clear DNA sequence context specificity which resembled the specificity of somatic hypermutation at G-C pairs in immunoglobulin genes and AID mutation specificity in vitro. The inability to detect mutator effects of AID by Krause et al. is likely to be caused by the use of the wild-type yeast strain and a small sample of clones examined for the presence of mutations. In addition, we show that non-uniformity of the mutation hotspot distribution is a factor potentially decreasing the chances of detecting mutations.",
keywords = "DNA context, Mutation frequency, Mutation hotspots, Polynucleotide (deoxy)cytidine deaminase, Somatic hypermutation",
author = "Rogozin, {Igor B.} and Pavlov, {Youri I}",
year = "2006",
month = "3",
day = "1",
doi = "10.1016/j.molimm.2005.09.002",
language = "English (US)",
volume = "43",
pages = "1481--1484",
journal = "Molecular Immunology",
issn = "0161-5890",
publisher = "Elsevier Limited",
number = "9",

}

TY - JOUR

T1 - The cytidine deaminase AID exhibits similar functional properties in yeast and mammals

AU - Rogozin, Igor B.

AU - Pavlov, Youri I

PY - 2006/3/1

Y1 - 2006/3/1

N2 - A recent work published in Molecular Immunology examined the editing activity of activation-induced deaminase (AID) in yeast (Krause, K., Marcu, K.B., Greeve, J., 2006. The cytidine deaminases AID and APOBEC-1 exhibit distinct functional properties in a novel yeast selectable system. Mol. Immunol.). It was proposed that expression of AID in yeast is not sufficient for the generation of point mutations in a highly transcribed gene due to the lack of cofactors for AID-induced somatic hypermutation, which are unique to B cells. It was suggested that, on its own, AID does not have an intrinsic specificity for its target sequences. However, it has been shown previously that expression of the human AID gene in yeast was moderately mutagenic in a wild-type strain and highly mutagenic in an ung1 uracil-DNA glycosylase-deficient strain (Mayorov, V.I., Rogozin, I.B., Adkison, L.R., Frahm, C.R., Kunkel T.A., Pavlov Y. I., 2005. Expression of human AID in yeast induces mutations in context similar to the context of somatic hypermutation at G-C pairs in immunoglobulin genes. BMC Immunol. 6, 10; Poltoratsky, V.P., Wilson, S.H., Kunkel, T.A., Pavlov, Y.I., 2004. Recombinogenic phenotype of human activation-induced cytosine deaminase. J. Immunol. 172, 4308-4313). The vast majority of mutations were at G-C pairs. Mutations showed a clear DNA sequence context specificity which resembled the specificity of somatic hypermutation at G-C pairs in immunoglobulin genes and AID mutation specificity in vitro. The inability to detect mutator effects of AID by Krause et al. is likely to be caused by the use of the wild-type yeast strain and a small sample of clones examined for the presence of mutations. In addition, we show that non-uniformity of the mutation hotspot distribution is a factor potentially decreasing the chances of detecting mutations.

AB - A recent work published in Molecular Immunology examined the editing activity of activation-induced deaminase (AID) in yeast (Krause, K., Marcu, K.B., Greeve, J., 2006. The cytidine deaminases AID and APOBEC-1 exhibit distinct functional properties in a novel yeast selectable system. Mol. Immunol.). It was proposed that expression of AID in yeast is not sufficient for the generation of point mutations in a highly transcribed gene due to the lack of cofactors for AID-induced somatic hypermutation, which are unique to B cells. It was suggested that, on its own, AID does not have an intrinsic specificity for its target sequences. However, it has been shown previously that expression of the human AID gene in yeast was moderately mutagenic in a wild-type strain and highly mutagenic in an ung1 uracil-DNA glycosylase-deficient strain (Mayorov, V.I., Rogozin, I.B., Adkison, L.R., Frahm, C.R., Kunkel T.A., Pavlov Y. I., 2005. Expression of human AID in yeast induces mutations in context similar to the context of somatic hypermutation at G-C pairs in immunoglobulin genes. BMC Immunol. 6, 10; Poltoratsky, V.P., Wilson, S.H., Kunkel, T.A., Pavlov, Y.I., 2004. Recombinogenic phenotype of human activation-induced cytosine deaminase. J. Immunol. 172, 4308-4313). The vast majority of mutations were at G-C pairs. Mutations showed a clear DNA sequence context specificity which resembled the specificity of somatic hypermutation at G-C pairs in immunoglobulin genes and AID mutation specificity in vitro. The inability to detect mutator effects of AID by Krause et al. is likely to be caused by the use of the wild-type yeast strain and a small sample of clones examined for the presence of mutations. In addition, we show that non-uniformity of the mutation hotspot distribution is a factor potentially decreasing the chances of detecting mutations.

KW - DNA context

KW - Mutation frequency

KW - Mutation hotspots

KW - Polynucleotide (deoxy)cytidine deaminase

KW - Somatic hypermutation

UR - http://www.scopus.com/inward/record.url?scp=33644827615&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33644827615&partnerID=8YFLogxK

U2 - 10.1016/j.molimm.2005.09.002

DO - 10.1016/j.molimm.2005.09.002

M3 - Article

C2 - 16219354

AN - SCOPUS:33644827615

VL - 43

SP - 1481

EP - 1484

JO - Molecular Immunology

JF - Molecular Immunology

SN - 0161-5890

IS - 9

ER -