The causal meaning of genomic predictors and how it affects construction and comparison of genome-enabled selection models

Bruno D. Valente, Gota Morota, Francisco Peñagaricano, Daniel Gianola, Kent Weigel, Guilherme J.M. Rosa

Research output: Contribution to journalArticle

11 Scopus citations

Abstract

The term “effect” in additive genetic effect suggests a causal meaning. However, inferences of such quantities for selection purposes are typically viewed and conducted as a prediction task. Predictive ability as tested by cross-validation is currently the most acceptable criterion for comparing models and evaluating new methodologies. Nevertheless, it does not directly indicate if predictors reflect causal effects. Such evaluations would require causal inference methods that are not typical in genomic prediction for selection. This suggests that the usual approach to infer genetic effects contradicts the label of the quantity inferred. Here we investigate if genomic predictors for selection should be treated as standard predictors or if they must reflect a causal effect to be useful, requiring causal inference methods. Conducting the analysis as a prediction or as a causal inference task affects, for example, how covariates of the regression model are chosen, which may heavily affect the magnitude of genomic predictors and therefore selection decisions. We demonstrate that selection requires learning causal genetic effects. However, genomic predictors from some models might capture noncausal signal, providing good predictive ability but poorly representing true genetic effects. Simulated examples are used to show that aiming for predictive ability may lead to poor modeling decisions, while causal inference approaches may guide the construction of regression models that better infer the target genetic effect even when they underperform in cross-validation tests. In conclusion, genomic selection models should be constructed to aim primarily for identifiability of causal genetic effects, not for predictive ability.

Original languageEnglish (US)
Pages (from-to)483-494
Number of pages12
JournalGenetics
Volume200
Issue number2
DOIs
StatePublished - Jan 1 2015

Keywords

  • Causal inference
  • Genomic selection
  • Genpred
  • Model comparison
  • Prediction
  • Selection
  • Shared data resource

ASJC Scopus subject areas

  • Genetics

Cite this