Tectoridins modulate skeletal and cardiac muscle sarcoplasmic reticulum calcium-release channels

Keshore R. Bidasee, Anderson Maxwell, William F. Reynolds, Vimalkumar Patel, Henry R. Besch

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

The isoflavones tectoridin (TTR) and 3'-hydroxy TTR (3'-TTR) were isolated from an Ayurvedic herbal preparation Vaca and evaluated for their affinity and effect on ryanodine receptors (RyR) using junctional sarcoplasmic reticulum vesicles (JSRVs). In [3H]ryanodine displacement binding affinity assays, TTR and 3'-TTR exhibited IC50 values of 17.3 ± 1.3 μM (K(d) = 6.7 ± 0.4 μM) and 6.6 ± 1.4 μM (K(d) = 2.4 ± 0.2 μM), respectively, for fast skeletal muscle RyR (RyR1) compared with an IC50 value for ryanodine of 6.2 ± 0.4 nM (K(d) = 2.4 nM). TTR demonstrated a 3- fold higher affinity for cardiac RyR (RyR2) [IC50 value of 5.2 ± 0.6 μM (K(d) = 0.95 ± 0.3 μM)] than for RyR1. The displacement isotherms for both TTRs paralleled that for ryanodine, consistent with the notion that all three are likely binding to similar site(s) on the receptors. Calcium efflux from and calcium influx into JSRVs were used to measure function effects of TTRs on binding to RyR. In calcium efflux assays, TTR (up to 1 mM) enhanced the release of 46Ca2+ from JSRVs in a concentration-dependent manner (EC(50act) of 750 μM). Higher concentrations deactivated (partially closed) RyR1.3'-TTR had similar effects, but was approximately 2-fold more potent, exhibiting an EC(60act) value of 480 μM. Using passive calcium influx assays, TTR activated and deactivated RyR1 in a time-and concentration- dependent manner. The aglycone tectorigenin also was effective in displacing [3H]ryanodine from RyR1 but not from RyR2. These results demonstrate that TTRs are capable of interacting at ryanodine binding sites to differentially modulate fast skeletal and cardiac calcium-release channels.

Original languageEnglish (US)
Pages (from-to)1074-1083
Number of pages10
JournalJournal of Pharmacology and Experimental Therapeutics
Volume293
Issue number3
StatePublished - Jun 1 2000

Fingerprint

Ryanodine Receptor Calcium Release Channel
Sarcoplasmic Reticulum
Calcium Channels
Myocardium
Skeletal Muscle
Ryanodine
Inhibitory Concentration 50
Calcium
Plant Preparations
Isoflavones
tectoridin
Binding Sites

ASJC Scopus subject areas

  • Molecular Medicine
  • Pharmacology

Cite this

Tectoridins modulate skeletal and cardiac muscle sarcoplasmic reticulum calcium-release channels. / Bidasee, Keshore R.; Maxwell, Anderson; Reynolds, William F.; Patel, Vimalkumar; Besch, Henry R.

In: Journal of Pharmacology and Experimental Therapeutics, Vol. 293, No. 3, 01.06.2000, p. 1074-1083.

Research output: Contribution to journalArticle

Bidasee, Keshore R. ; Maxwell, Anderson ; Reynolds, William F. ; Patel, Vimalkumar ; Besch, Henry R. / Tectoridins modulate skeletal and cardiac muscle sarcoplasmic reticulum calcium-release channels. In: Journal of Pharmacology and Experimental Therapeutics. 2000 ; Vol. 293, No. 3. pp. 1074-1083.
@article{3a14cb329add42c38a25e9c67db3bf85,
title = "Tectoridins modulate skeletal and cardiac muscle sarcoplasmic reticulum calcium-release channels",
abstract = "The isoflavones tectoridin (TTR) and 3'-hydroxy TTR (3'-TTR) were isolated from an Ayurvedic herbal preparation Vaca and evaluated for their affinity and effect on ryanodine receptors (RyR) using junctional sarcoplasmic reticulum vesicles (JSRVs). In [3H]ryanodine displacement binding affinity assays, TTR and 3'-TTR exhibited IC50 values of 17.3 ± 1.3 μM (K(d) = 6.7 ± 0.4 μM) and 6.6 ± 1.4 μM (K(d) = 2.4 ± 0.2 μM), respectively, for fast skeletal muscle RyR (RyR1) compared with an IC50 value for ryanodine of 6.2 ± 0.4 nM (K(d) = 2.4 nM). TTR demonstrated a 3- fold higher affinity for cardiac RyR (RyR2) [IC50 value of 5.2 ± 0.6 μM (K(d) = 0.95 ± 0.3 μM)] than for RyR1. The displacement isotherms for both TTRs paralleled that for ryanodine, consistent with the notion that all three are likely binding to similar site(s) on the receptors. Calcium efflux from and calcium influx into JSRVs were used to measure function effects of TTRs on binding to RyR. In calcium efflux assays, TTR (up to 1 mM) enhanced the release of 46Ca2+ from JSRVs in a concentration-dependent manner (EC(50act) of 750 μM). Higher concentrations deactivated (partially closed) RyR1.3'-TTR had similar effects, but was approximately 2-fold more potent, exhibiting an EC(60act) value of 480 μM. Using passive calcium influx assays, TTR activated and deactivated RyR1 in a time-and concentration- dependent manner. The aglycone tectorigenin also was effective in displacing [3H]ryanodine from RyR1 but not from RyR2. These results demonstrate that TTRs are capable of interacting at ryanodine binding sites to differentially modulate fast skeletal and cardiac calcium-release channels.",
author = "Bidasee, {Keshore R.} and Anderson Maxwell and Reynolds, {William F.} and Vimalkumar Patel and Besch, {Henry R.}",
year = "2000",
month = "6",
day = "1",
language = "English (US)",
volume = "293",
pages = "1074--1083",
journal = "Journal of Pharmacology and Experimental Therapeutics",
issn = "0022-3565",
publisher = "American Society for Pharmacology and Experimental Therapeutics",
number = "3",

}

TY - JOUR

T1 - Tectoridins modulate skeletal and cardiac muscle sarcoplasmic reticulum calcium-release channels

AU - Bidasee, Keshore R.

AU - Maxwell, Anderson

AU - Reynolds, William F.

AU - Patel, Vimalkumar

AU - Besch, Henry R.

PY - 2000/6/1

Y1 - 2000/6/1

N2 - The isoflavones tectoridin (TTR) and 3'-hydroxy TTR (3'-TTR) were isolated from an Ayurvedic herbal preparation Vaca and evaluated for their affinity and effect on ryanodine receptors (RyR) using junctional sarcoplasmic reticulum vesicles (JSRVs). In [3H]ryanodine displacement binding affinity assays, TTR and 3'-TTR exhibited IC50 values of 17.3 ± 1.3 μM (K(d) = 6.7 ± 0.4 μM) and 6.6 ± 1.4 μM (K(d) = 2.4 ± 0.2 μM), respectively, for fast skeletal muscle RyR (RyR1) compared with an IC50 value for ryanodine of 6.2 ± 0.4 nM (K(d) = 2.4 nM). TTR demonstrated a 3- fold higher affinity for cardiac RyR (RyR2) [IC50 value of 5.2 ± 0.6 μM (K(d) = 0.95 ± 0.3 μM)] than for RyR1. The displacement isotherms for both TTRs paralleled that for ryanodine, consistent with the notion that all three are likely binding to similar site(s) on the receptors. Calcium efflux from and calcium influx into JSRVs were used to measure function effects of TTRs on binding to RyR. In calcium efflux assays, TTR (up to 1 mM) enhanced the release of 46Ca2+ from JSRVs in a concentration-dependent manner (EC(50act) of 750 μM). Higher concentrations deactivated (partially closed) RyR1.3'-TTR had similar effects, but was approximately 2-fold more potent, exhibiting an EC(60act) value of 480 μM. Using passive calcium influx assays, TTR activated and deactivated RyR1 in a time-and concentration- dependent manner. The aglycone tectorigenin also was effective in displacing [3H]ryanodine from RyR1 but not from RyR2. These results demonstrate that TTRs are capable of interacting at ryanodine binding sites to differentially modulate fast skeletal and cardiac calcium-release channels.

AB - The isoflavones tectoridin (TTR) and 3'-hydroxy TTR (3'-TTR) were isolated from an Ayurvedic herbal preparation Vaca and evaluated for their affinity and effect on ryanodine receptors (RyR) using junctional sarcoplasmic reticulum vesicles (JSRVs). In [3H]ryanodine displacement binding affinity assays, TTR and 3'-TTR exhibited IC50 values of 17.3 ± 1.3 μM (K(d) = 6.7 ± 0.4 μM) and 6.6 ± 1.4 μM (K(d) = 2.4 ± 0.2 μM), respectively, for fast skeletal muscle RyR (RyR1) compared with an IC50 value for ryanodine of 6.2 ± 0.4 nM (K(d) = 2.4 nM). TTR demonstrated a 3- fold higher affinity for cardiac RyR (RyR2) [IC50 value of 5.2 ± 0.6 μM (K(d) = 0.95 ± 0.3 μM)] than for RyR1. The displacement isotherms for both TTRs paralleled that for ryanodine, consistent with the notion that all three are likely binding to similar site(s) on the receptors. Calcium efflux from and calcium influx into JSRVs were used to measure function effects of TTRs on binding to RyR. In calcium efflux assays, TTR (up to 1 mM) enhanced the release of 46Ca2+ from JSRVs in a concentration-dependent manner (EC(50act) of 750 μM). Higher concentrations deactivated (partially closed) RyR1.3'-TTR had similar effects, but was approximately 2-fold more potent, exhibiting an EC(60act) value of 480 μM. Using passive calcium influx assays, TTR activated and deactivated RyR1 in a time-and concentration- dependent manner. The aglycone tectorigenin also was effective in displacing [3H]ryanodine from RyR1 but not from RyR2. These results demonstrate that TTRs are capable of interacting at ryanodine binding sites to differentially modulate fast skeletal and cardiac calcium-release channels.

UR - http://www.scopus.com/inward/record.url?scp=0034131311&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034131311&partnerID=8YFLogxK

M3 - Article

C2 - 10869412

AN - SCOPUS:0034131311

VL - 293

SP - 1074

EP - 1083

JO - Journal of Pharmacology and Experimental Therapeutics

JF - Journal of Pharmacology and Experimental Therapeutics

SN - 0022-3565

IS - 3

ER -