Systemic venous diameters, collapsibility indices, and right Atrial measurements in normal pediatric subjects

Shelby Kutty, Ling Li, Rimsha Hasan, Qinghai Peng, Sheela Rangamani, David Alan Danford

Research output: Contribution to journalArticle

30 Citations (Scopus)

Abstract

Background Compromise of right heart function is an important feature of many forms of congenital heart disease, and right atrial (RA) pressure is clinically relevant. Inferior vena cava (IVC) diameter and inspiratory collapse are indices of RA pressure, but pediatric data are lacking. Methods RA measurements, systemic venous diameters, and Doppler filling fractions were prospectively investigated in healthy volunteer children and adolescents. The IVC was measured in its long axis just above the junction with the hepatic veins in the subxiphoid view and the superior vena cava at its junction with the right atrium in the right parasternal view. The changes in IVC diameter (IVCD) during quiet respiration and with a sniff were recorded. Hepatic venous systolic filling fraction was calculated from Doppler velocities in the first hepatic vein. RA major-axis length, area, and volume were measured from the apical four-chamber view. Three measurements of each parameter were averaged over at least three respiratory cycles. The IVC collapsibility index (IVCCI) was calculated as [(IVCDmax - IVCDmin)/IVCDmax] × 100. Substituting IVCDsniff for IVCDmin in the formula, the IVCCIsniff was calculated. Results Of 132 subjects enrolled, data in 120 (mean age, 8.3 ± 4.5 years) were analyzed. The maximal (expiratory) and minimal (inspiratory) diameters during free breathing were 12.1 ± 3.8 and 8.9 ± 3.8 mm for the IVC and 11.9 ± 3.4 and 7.9 ± 2.6 mm for the superior vena cava. IVCCImin and IVCCIsniff were 30 ± 13 and 47 ± 18, respectively. The RA major-axis length, area, and indexed maximal volume were 3.7 ± 0.7 cm, 10.3 ± 3.6 cm2, and 22.3 ± 7.0 mL/m2, respectively. Correlations of maximal superior vena cava and IVC dimensions with body surface area were slightly better than with age and much stronger than with RA volume. No significant correlation was found between IVCCIs and age, gender, or indexed RA volume. Conclusions Measurement of systemic venous diameters, collapsibility indices, and RA volumes is feasible in healthy children and adolescents. Venous diameters increase predictably with growth and so must be interpreted in light of body surface area. IVCCIs and hepatic venous filling fraction compare closely with those reported in adults. Pediatric nomograms for these parameters are provided, and they should next be evaluated for relation to directly measured RA pressure in this age group.

Original languageEnglish (US)
Pages (from-to)155-162
Number of pages8
JournalJournal of the American Society of Echocardiography
Volume27
Issue number2
DOIs
StatePublished - Feb 1 2014

Fingerprint

Inferior Vena Cava
Pediatrics
Superior Vena Cava
Atrial Pressure
Hepatic Veins
Body Surface Area
Respiration
Nomograms
Liver
Heart Atria
Heart Diseases
Healthy Volunteers
Age Groups
Growth

Keywords

  • Collapsibility index
  • Filling fraction
  • Pediatric cardiology
  • Right heart function
  • Systemic veins
  • Two-dimensional echocardiography

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging
  • Cardiology and Cardiovascular Medicine

Cite this

Systemic venous diameters, collapsibility indices, and right Atrial measurements in normal pediatric subjects. / Kutty, Shelby; Li, Ling; Hasan, Rimsha; Peng, Qinghai; Rangamani, Sheela; Danford, David Alan.

In: Journal of the American Society of Echocardiography, Vol. 27, No. 2, 01.02.2014, p. 155-162.

Research output: Contribution to journalArticle

@article{99fecf446b2d49f3946eb419dea061a0,
title = "Systemic venous diameters, collapsibility indices, and right Atrial measurements in normal pediatric subjects",
abstract = "Background Compromise of right heart function is an important feature of many forms of congenital heart disease, and right atrial (RA) pressure is clinically relevant. Inferior vena cava (IVC) diameter and inspiratory collapse are indices of RA pressure, but pediatric data are lacking. Methods RA measurements, systemic venous diameters, and Doppler filling fractions were prospectively investigated in healthy volunteer children and adolescents. The IVC was measured in its long axis just above the junction with the hepatic veins in the subxiphoid view and the superior vena cava at its junction with the right atrium in the right parasternal view. The changes in IVC diameter (IVCD) during quiet respiration and with a sniff were recorded. Hepatic venous systolic filling fraction was calculated from Doppler velocities in the first hepatic vein. RA major-axis length, area, and volume were measured from the apical four-chamber view. Three measurements of each parameter were averaged over at least three respiratory cycles. The IVC collapsibility index (IVCCI) was calculated as [(IVCDmax - IVCDmin)/IVCDmax] × 100. Substituting IVCDsniff for IVCDmin in the formula, the IVCCIsniff was calculated. Results Of 132 subjects enrolled, data in 120 (mean age, 8.3 ± 4.5 years) were analyzed. The maximal (expiratory) and minimal (inspiratory) diameters during free breathing were 12.1 ± 3.8 and 8.9 ± 3.8 mm for the IVC and 11.9 ± 3.4 and 7.9 ± 2.6 mm for the superior vena cava. IVCCImin and IVCCIsniff were 30 ± 13 and 47 ± 18, respectively. The RA major-axis length, area, and indexed maximal volume were 3.7 ± 0.7 cm, 10.3 ± 3.6 cm2, and 22.3 ± 7.0 mL/m2, respectively. Correlations of maximal superior vena cava and IVC dimensions with body surface area were slightly better than with age and much stronger than with RA volume. No significant correlation was found between IVCCIs and age, gender, or indexed RA volume. Conclusions Measurement of systemic venous diameters, collapsibility indices, and RA volumes is feasible in healthy children and adolescents. Venous diameters increase predictably with growth and so must be interpreted in light of body surface area. IVCCIs and hepatic venous filling fraction compare closely with those reported in adults. Pediatric nomograms for these parameters are provided, and they should next be evaluated for relation to directly measured RA pressure in this age group.",
keywords = "Collapsibility index, Filling fraction, Pediatric cardiology, Right heart function, Systemic veins, Two-dimensional echocardiography",
author = "Shelby Kutty and Ling Li and Rimsha Hasan and Qinghai Peng and Sheela Rangamani and Danford, {David Alan}",
year = "2014",
month = "2",
day = "1",
doi = "10.1016/j.echo.2013.09.002",
language = "English (US)",
volume = "27",
pages = "155--162",
journal = "Journal of the American Society of Echocardiography",
issn = "0894-7317",
publisher = "Mosby Inc.",
number = "2",

}

TY - JOUR

T1 - Systemic venous diameters, collapsibility indices, and right Atrial measurements in normal pediatric subjects

AU - Kutty, Shelby

AU - Li, Ling

AU - Hasan, Rimsha

AU - Peng, Qinghai

AU - Rangamani, Sheela

AU - Danford, David Alan

PY - 2014/2/1

Y1 - 2014/2/1

N2 - Background Compromise of right heart function is an important feature of many forms of congenital heart disease, and right atrial (RA) pressure is clinically relevant. Inferior vena cava (IVC) diameter and inspiratory collapse are indices of RA pressure, but pediatric data are lacking. Methods RA measurements, systemic venous diameters, and Doppler filling fractions were prospectively investigated in healthy volunteer children and adolescents. The IVC was measured in its long axis just above the junction with the hepatic veins in the subxiphoid view and the superior vena cava at its junction with the right atrium in the right parasternal view. The changes in IVC diameter (IVCD) during quiet respiration and with a sniff were recorded. Hepatic venous systolic filling fraction was calculated from Doppler velocities in the first hepatic vein. RA major-axis length, area, and volume were measured from the apical four-chamber view. Three measurements of each parameter were averaged over at least three respiratory cycles. The IVC collapsibility index (IVCCI) was calculated as [(IVCDmax - IVCDmin)/IVCDmax] × 100. Substituting IVCDsniff for IVCDmin in the formula, the IVCCIsniff was calculated. Results Of 132 subjects enrolled, data in 120 (mean age, 8.3 ± 4.5 years) were analyzed. The maximal (expiratory) and minimal (inspiratory) diameters during free breathing were 12.1 ± 3.8 and 8.9 ± 3.8 mm for the IVC and 11.9 ± 3.4 and 7.9 ± 2.6 mm for the superior vena cava. IVCCImin and IVCCIsniff were 30 ± 13 and 47 ± 18, respectively. The RA major-axis length, area, and indexed maximal volume were 3.7 ± 0.7 cm, 10.3 ± 3.6 cm2, and 22.3 ± 7.0 mL/m2, respectively. Correlations of maximal superior vena cava and IVC dimensions with body surface area were slightly better than with age and much stronger than with RA volume. No significant correlation was found between IVCCIs and age, gender, or indexed RA volume. Conclusions Measurement of systemic venous diameters, collapsibility indices, and RA volumes is feasible in healthy children and adolescents. Venous diameters increase predictably with growth and so must be interpreted in light of body surface area. IVCCIs and hepatic venous filling fraction compare closely with those reported in adults. Pediatric nomograms for these parameters are provided, and they should next be evaluated for relation to directly measured RA pressure in this age group.

AB - Background Compromise of right heart function is an important feature of many forms of congenital heart disease, and right atrial (RA) pressure is clinically relevant. Inferior vena cava (IVC) diameter and inspiratory collapse are indices of RA pressure, but pediatric data are lacking. Methods RA measurements, systemic venous diameters, and Doppler filling fractions were prospectively investigated in healthy volunteer children and adolescents. The IVC was measured in its long axis just above the junction with the hepatic veins in the subxiphoid view and the superior vena cava at its junction with the right atrium in the right parasternal view. The changes in IVC diameter (IVCD) during quiet respiration and with a sniff were recorded. Hepatic venous systolic filling fraction was calculated from Doppler velocities in the first hepatic vein. RA major-axis length, area, and volume were measured from the apical four-chamber view. Three measurements of each parameter were averaged over at least three respiratory cycles. The IVC collapsibility index (IVCCI) was calculated as [(IVCDmax - IVCDmin)/IVCDmax] × 100. Substituting IVCDsniff for IVCDmin in the formula, the IVCCIsniff was calculated. Results Of 132 subjects enrolled, data in 120 (mean age, 8.3 ± 4.5 years) were analyzed. The maximal (expiratory) and minimal (inspiratory) diameters during free breathing were 12.1 ± 3.8 and 8.9 ± 3.8 mm for the IVC and 11.9 ± 3.4 and 7.9 ± 2.6 mm for the superior vena cava. IVCCImin and IVCCIsniff were 30 ± 13 and 47 ± 18, respectively. The RA major-axis length, area, and indexed maximal volume were 3.7 ± 0.7 cm, 10.3 ± 3.6 cm2, and 22.3 ± 7.0 mL/m2, respectively. Correlations of maximal superior vena cava and IVC dimensions with body surface area were slightly better than with age and much stronger than with RA volume. No significant correlation was found between IVCCIs and age, gender, or indexed RA volume. Conclusions Measurement of systemic venous diameters, collapsibility indices, and RA volumes is feasible in healthy children and adolescents. Venous diameters increase predictably with growth and so must be interpreted in light of body surface area. IVCCIs and hepatic venous filling fraction compare closely with those reported in adults. Pediatric nomograms for these parameters are provided, and they should next be evaluated for relation to directly measured RA pressure in this age group.

KW - Collapsibility index

KW - Filling fraction

KW - Pediatric cardiology

KW - Right heart function

KW - Systemic veins

KW - Two-dimensional echocardiography

UR - http://www.scopus.com/inward/record.url?scp=84893647809&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84893647809&partnerID=8YFLogxK

U2 - 10.1016/j.echo.2013.09.002

DO - 10.1016/j.echo.2013.09.002

M3 - Article

C2 - 24120318

AN - SCOPUS:84893647809

VL - 27

SP - 155

EP - 162

JO - Journal of the American Society of Echocardiography

JF - Journal of the American Society of Echocardiography

SN - 0894-7317

IS - 2

ER -