Systematic analysis of palatal transcriptome to identify cleft palate genes within TGFβ3-knockout mice alleles: RNA-Seq analysis of TGFβ3 Mice

Ferhat Ozturk, You Li, Xiujuan Zhu, Chittibabu Guda, Ali Nawshad

Research output: Contribution to journalArticle

18 Citations (Scopus)

Abstract

Background: In humans, cleft palate (CP) accounts for one of the largest number of birth defects with a complex genetic and environmental etiology. TGFβ3 has been established as an important regulator of palatal fusion in mice and it has been shown that TGFβ3-null mice exhibit CP without any other major deformities. However, the genes that regulate cellular decisions and molecular mechanisms maintained by the TGFβ3 pathway throughout palatogenesis are predominantly unexplored. Our objective in this study was to analyze global transcriptome changes within the palate during different gestational ages within TGFβ3 knockout mice to identify TGFβ3-associated genes previously unknown to be associated with the development of cleft palate. We used deep sequencing technology, RNA-Seq, to analyze the transcriptome of TGFβ3 knockout mice at crucial stages of palatogenesis, including palatal growth (E14.5), adhesion (E15.5), and fusion (E16.5). Results: The overall transcriptome analysis of TGFβ3 wildtype mice (C57BL/6) reveals that almost 6000 genes were upregulated during the transition from E14.5 to E15.5 and more than 2000 were downregulated from E15.5 to E16.5. Using bioinformatics tools and databases, we identified the most comprehensive list of CP genes (n = 322) in which mutations cause CP either in humans or mice, and analyzed their expression patterns. The expression motifs of CP genes between TGFβ3+/- and TGFβ3-/- were not significantly different from each other, and the expression of the majority of CP genes remained unchanged from E14.5 to E16.5. Using these patterns, we identified 8 unique genes within TGFβ3-/- mice (Chrng, Foxc2, H19, Kcnj13, Lhx8, Meox2, Shh, and Six3), which may function as the primary contributors to the development of cleft palate in TGFβ3-/- mice. When the significantly altered CP genes were overlaid with TGFβ signaling, all of these genes followed the Smad-dependent pathway. Conclusions: Our study represents the first analysis of the palatal transcriptome of the mouse, as well as TGFβ3 knockout mice, using deep sequencing methods. In this study, we characterized the critical regulation of palatal transcripts that may play key regulatory roles through crucial stages of palatal development. We identified potential causative CP genes in a TGFβ3 knockout model, which may lead to a better understanding of the genetic mechanisms of palatogenesis and provide novel potential targets for gene therapy approaches to treat cleft palate.

Original languageEnglish (US)
Article number113
JournalBMC genomics
Volume14
Issue number1
DOIs
StatePublished - Feb 20 2013

Fingerprint

Cleft Palate
Gene Expression Profiling
Knockout Mice
Alleles
RNA
Genes
High-Throughput Nucleotide Sequencing
Palate
Computational Biology
Inbred C57BL Mouse
Genetic Therapy
Gestational Age
Down-Regulation
Databases
Technology
Mutation

Keywords

  • Cleft palate
  • Craniofacial
  • Knockout
  • Next-generation sequencing
  • Palate
  • Palatogenesis
  • RNA-Seq
  • TGFβ3
  • Transcriptome

ASJC Scopus subject areas

  • Biotechnology
  • Genetics

Cite this

Systematic analysis of palatal transcriptome to identify cleft palate genes within TGFβ3-knockout mice alleles : RNA-Seq analysis of TGFβ3 Mice. / Ozturk, Ferhat; Li, You; Zhu, Xiujuan; Guda, Chittibabu; Nawshad, Ali.

In: BMC genomics, Vol. 14, No. 1, 113, 20.02.2013.

Research output: Contribution to journalArticle

@article{5cc5f3cbf3e9499bbd45bca214a7aa3e,
title = "Systematic analysis of palatal transcriptome to identify cleft palate genes within TGFβ3-knockout mice alleles: RNA-Seq analysis of TGFβ3 Mice",
abstract = "Background: In humans, cleft palate (CP) accounts for one of the largest number of birth defects with a complex genetic and environmental etiology. TGFβ3 has been established as an important regulator of palatal fusion in mice and it has been shown that TGFβ3-null mice exhibit CP without any other major deformities. However, the genes that regulate cellular decisions and molecular mechanisms maintained by the TGFβ3 pathway throughout palatogenesis are predominantly unexplored. Our objective in this study was to analyze global transcriptome changes within the palate during different gestational ages within TGFβ3 knockout mice to identify TGFβ3-associated genes previously unknown to be associated with the development of cleft palate. We used deep sequencing technology, RNA-Seq, to analyze the transcriptome of TGFβ3 knockout mice at crucial stages of palatogenesis, including palatal growth (E14.5), adhesion (E15.5), and fusion (E16.5). Results: The overall transcriptome analysis of TGFβ3 wildtype mice (C57BL/6) reveals that almost 6000 genes were upregulated during the transition from E14.5 to E15.5 and more than 2000 were downregulated from E15.5 to E16.5. Using bioinformatics tools and databases, we identified the most comprehensive list of CP genes (n = 322) in which mutations cause CP either in humans or mice, and analyzed their expression patterns. The expression motifs of CP genes between TGFβ3+/- and TGFβ3-/- were not significantly different from each other, and the expression of the majority of CP genes remained unchanged from E14.5 to E16.5. Using these patterns, we identified 8 unique genes within TGFβ3-/- mice (Chrng, Foxc2, H19, Kcnj13, Lhx8, Meox2, Shh, and Six3), which may function as the primary contributors to the development of cleft palate in TGFβ3-/- mice. When the significantly altered CP genes were overlaid with TGFβ signaling, all of these genes followed the Smad-dependent pathway. Conclusions: Our study represents the first analysis of the palatal transcriptome of the mouse, as well as TGFβ3 knockout mice, using deep sequencing methods. In this study, we characterized the critical regulation of palatal transcripts that may play key regulatory roles through crucial stages of palatal development. We identified potential causative CP genes in a TGFβ3 knockout model, which may lead to a better understanding of the genetic mechanisms of palatogenesis and provide novel potential targets for gene therapy approaches to treat cleft palate.",
keywords = "Cleft palate, Craniofacial, Knockout, Next-generation sequencing, Palate, Palatogenesis, RNA-Seq, TGFβ3, Transcriptome",
author = "Ferhat Ozturk and You Li and Xiujuan Zhu and Chittibabu Guda and Ali Nawshad",
year = "2013",
month = "2",
day = "20",
doi = "10.1186/1471-2164-14-113",
language = "English (US)",
volume = "14",
journal = "BMC Genomics",
issn = "1471-2164",
publisher = "BioMed Central",
number = "1",

}

TY - JOUR

T1 - Systematic analysis of palatal transcriptome to identify cleft palate genes within TGFβ3-knockout mice alleles

T2 - RNA-Seq analysis of TGFβ3 Mice

AU - Ozturk, Ferhat

AU - Li, You

AU - Zhu, Xiujuan

AU - Guda, Chittibabu

AU - Nawshad, Ali

PY - 2013/2/20

Y1 - 2013/2/20

N2 - Background: In humans, cleft palate (CP) accounts for one of the largest number of birth defects with a complex genetic and environmental etiology. TGFβ3 has been established as an important regulator of palatal fusion in mice and it has been shown that TGFβ3-null mice exhibit CP without any other major deformities. However, the genes that regulate cellular decisions and molecular mechanisms maintained by the TGFβ3 pathway throughout palatogenesis are predominantly unexplored. Our objective in this study was to analyze global transcriptome changes within the palate during different gestational ages within TGFβ3 knockout mice to identify TGFβ3-associated genes previously unknown to be associated with the development of cleft palate. We used deep sequencing technology, RNA-Seq, to analyze the transcriptome of TGFβ3 knockout mice at crucial stages of palatogenesis, including palatal growth (E14.5), adhesion (E15.5), and fusion (E16.5). Results: The overall transcriptome analysis of TGFβ3 wildtype mice (C57BL/6) reveals that almost 6000 genes were upregulated during the transition from E14.5 to E15.5 and more than 2000 were downregulated from E15.5 to E16.5. Using bioinformatics tools and databases, we identified the most comprehensive list of CP genes (n = 322) in which mutations cause CP either in humans or mice, and analyzed their expression patterns. The expression motifs of CP genes between TGFβ3+/- and TGFβ3-/- were not significantly different from each other, and the expression of the majority of CP genes remained unchanged from E14.5 to E16.5. Using these patterns, we identified 8 unique genes within TGFβ3-/- mice (Chrng, Foxc2, H19, Kcnj13, Lhx8, Meox2, Shh, and Six3), which may function as the primary contributors to the development of cleft palate in TGFβ3-/- mice. When the significantly altered CP genes were overlaid with TGFβ signaling, all of these genes followed the Smad-dependent pathway. Conclusions: Our study represents the first analysis of the palatal transcriptome of the mouse, as well as TGFβ3 knockout mice, using deep sequencing methods. In this study, we characterized the critical regulation of palatal transcripts that may play key regulatory roles through crucial stages of palatal development. We identified potential causative CP genes in a TGFβ3 knockout model, which may lead to a better understanding of the genetic mechanisms of palatogenesis and provide novel potential targets for gene therapy approaches to treat cleft palate.

AB - Background: In humans, cleft palate (CP) accounts for one of the largest number of birth defects with a complex genetic and environmental etiology. TGFβ3 has been established as an important regulator of palatal fusion in mice and it has been shown that TGFβ3-null mice exhibit CP without any other major deformities. However, the genes that regulate cellular decisions and molecular mechanisms maintained by the TGFβ3 pathway throughout palatogenesis are predominantly unexplored. Our objective in this study was to analyze global transcriptome changes within the palate during different gestational ages within TGFβ3 knockout mice to identify TGFβ3-associated genes previously unknown to be associated with the development of cleft palate. We used deep sequencing technology, RNA-Seq, to analyze the transcriptome of TGFβ3 knockout mice at crucial stages of palatogenesis, including palatal growth (E14.5), adhesion (E15.5), and fusion (E16.5). Results: The overall transcriptome analysis of TGFβ3 wildtype mice (C57BL/6) reveals that almost 6000 genes were upregulated during the transition from E14.5 to E15.5 and more than 2000 were downregulated from E15.5 to E16.5. Using bioinformatics tools and databases, we identified the most comprehensive list of CP genes (n = 322) in which mutations cause CP either in humans or mice, and analyzed their expression patterns. The expression motifs of CP genes between TGFβ3+/- and TGFβ3-/- were not significantly different from each other, and the expression of the majority of CP genes remained unchanged from E14.5 to E16.5. Using these patterns, we identified 8 unique genes within TGFβ3-/- mice (Chrng, Foxc2, H19, Kcnj13, Lhx8, Meox2, Shh, and Six3), which may function as the primary contributors to the development of cleft palate in TGFβ3-/- mice. When the significantly altered CP genes were overlaid with TGFβ signaling, all of these genes followed the Smad-dependent pathway. Conclusions: Our study represents the first analysis of the palatal transcriptome of the mouse, as well as TGFβ3 knockout mice, using deep sequencing methods. In this study, we characterized the critical regulation of palatal transcripts that may play key regulatory roles through crucial stages of palatal development. We identified potential causative CP genes in a TGFβ3 knockout model, which may lead to a better understanding of the genetic mechanisms of palatogenesis and provide novel potential targets for gene therapy approaches to treat cleft palate.

KW - Cleft palate

KW - Craniofacial

KW - Knockout

KW - Next-generation sequencing

KW - Palate

KW - Palatogenesis

KW - RNA-Seq

KW - TGFβ3

KW - Transcriptome

UR - http://www.scopus.com/inward/record.url?scp=84873947633&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84873947633&partnerID=8YFLogxK

U2 - 10.1186/1471-2164-14-113

DO - 10.1186/1471-2164-14-113

M3 - Article

C2 - 23421592

AN - SCOPUS:84873947633

VL - 14

JO - BMC Genomics

JF - BMC Genomics

SN - 1471-2164

IS - 1

M1 - 113

ER -