SU‐GG‐T‐446

Dosimetric Characteristics of High Definition Multi‐Leaf Collimator

Z. Wang, Z. Chang, Q. wu, Sumin Zhou, C. Huntzinger, F. Yin

Research output: Contribution to journalArticle

Abstract

Purpose: A new type of high‐definition multi‐leaf collimator (HD 120 MLC, Varian Medical Systems) is being introduced into clinical practice to improve the conformality of stereotactic radiation therapy and radiosurgery. Its leaf width at isocenter is 2.5 mm. The interface and casing are the same as Millennium 120 MLC so it can be easily fit inside the gantry for better clearance and efficiency. This study investigated the dosimetric characteristics of this new micro MLC. Method and Materials: The HD 120 MLC was installed in a Novalis TX dedicated image‐guided SRS/SBRT machine. Beam penumbra (defined between 20–80%) was measured with a scanning radiosurgery diode for various field sizes, depth, and beam energies. Dynamic dosimetric gap and leaf transmission were measured with both low (6 MV and 6 MV SRS) and high energy (15 MV) photon beams. The conformity and step effect were studied with a series of circular beams with various radius. Results: The penumbra of HD 120 MLC was measured to be 0.25 cm for 6 MV at 1.5 cm depth with 2 cm × 2 cm field size. It increases to 0.49 cm for 30 cm × 30 cm field size. For 15 MV at 3 cm depth, the penumbra increases from 0.36 cm at 2 cm × 2 cm to 0.60 at 30 cm × 30 cm. For other field sizes and depth, the penumbra values are listed in Table I. The dynamic dosimetric gap was 0.86 cm for 6 MV and 0.98 mm for 15 MV. The leaf transmission factors were 1.17% for 6 MV and 1.33% for 15 MV. Conclusion: HD 120 MLC provides finer beam penumbra, smaller dynamic dose gap, and lower leaf transmission compared to conventional Millennium MLC, and can thus potentially improve the conformality of SRS/SBRT treatments.

Original languageEnglish (US)
Pages (from-to)2827
Number of pages1
JournalMedical Physics
Volume35
Issue number6
DOIs
StatePublished - 2008
Externally publishedYes

Fingerprint

Radiosurgery
Photons
Radiotherapy
Therapeutics

ASJC Scopus subject areas

  • Biophysics
  • Radiology Nuclear Medicine and imaging

Cite this

SU‐GG‐T‐446 : Dosimetric Characteristics of High Definition Multi‐Leaf Collimator. / Wang, Z.; Chang, Z.; wu, Q.; Zhou, Sumin; Huntzinger, C.; Yin, F.

In: Medical Physics, Vol. 35, No. 6, 2008, p. 2827.

Research output: Contribution to journalArticle

Wang, Z. ; Chang, Z. ; wu, Q. ; Zhou, Sumin ; Huntzinger, C. ; Yin, F. / SU‐GG‐T‐446 : Dosimetric Characteristics of High Definition Multi‐Leaf Collimator. In: Medical Physics. 2008 ; Vol. 35, No. 6. pp. 2827.
@article{417931edd84d4dbd99cf8a9aca2b0199,
title = "SU‐GG‐T‐446: Dosimetric Characteristics of High Definition Multi‐Leaf Collimator",
abstract = "Purpose: A new type of high‐definition multi‐leaf collimator (HD 120 MLC, Varian Medical Systems) is being introduced into clinical practice to improve the conformality of stereotactic radiation therapy and radiosurgery. Its leaf width at isocenter is 2.5 mm. The interface and casing are the same as Millennium 120 MLC so it can be easily fit inside the gantry for better clearance and efficiency. This study investigated the dosimetric characteristics of this new micro MLC. Method and Materials: The HD 120 MLC was installed in a Novalis TX dedicated image‐guided SRS/SBRT machine. Beam penumbra (defined between 20–80{\%}) was measured with a scanning radiosurgery diode for various field sizes, depth, and beam energies. Dynamic dosimetric gap and leaf transmission were measured with both low (6 MV and 6 MV SRS) and high energy (15 MV) photon beams. The conformity and step effect were studied with a series of circular beams with various radius. Results: The penumbra of HD 120 MLC was measured to be 0.25 cm for 6 MV at 1.5 cm depth with 2 cm × 2 cm field size. It increases to 0.49 cm for 30 cm × 30 cm field size. For 15 MV at 3 cm depth, the penumbra increases from 0.36 cm at 2 cm × 2 cm to 0.60 at 30 cm × 30 cm. For other field sizes and depth, the penumbra values are listed in Table I. The dynamic dosimetric gap was 0.86 cm for 6 MV and 0.98 mm for 15 MV. The leaf transmission factors were 1.17{\%} for 6 MV and 1.33{\%} for 15 MV. Conclusion: HD 120 MLC provides finer beam penumbra, smaller dynamic dose gap, and lower leaf transmission compared to conventional Millennium MLC, and can thus potentially improve the conformality of SRS/SBRT treatments.",
author = "Z. Wang and Z. Chang and Q. wu and Sumin Zhou and C. Huntzinger and F. Yin",
year = "2008",
doi = "10.1118/1.2962194",
language = "English (US)",
volume = "35",
pages = "2827",
journal = "Medical Physics",
issn = "0094-2405",
publisher = "AAPM - American Association of Physicists in Medicine",
number = "6",

}

TY - JOUR

T1 - SU‐GG‐T‐446

T2 - Dosimetric Characteristics of High Definition Multi‐Leaf Collimator

AU - Wang, Z.

AU - Chang, Z.

AU - wu, Q.

AU - Zhou, Sumin

AU - Huntzinger, C.

AU - Yin, F.

PY - 2008

Y1 - 2008

N2 - Purpose: A new type of high‐definition multi‐leaf collimator (HD 120 MLC, Varian Medical Systems) is being introduced into clinical practice to improve the conformality of stereotactic radiation therapy and radiosurgery. Its leaf width at isocenter is 2.5 mm. The interface and casing are the same as Millennium 120 MLC so it can be easily fit inside the gantry for better clearance and efficiency. This study investigated the dosimetric characteristics of this new micro MLC. Method and Materials: The HD 120 MLC was installed in a Novalis TX dedicated image‐guided SRS/SBRT machine. Beam penumbra (defined between 20–80%) was measured with a scanning radiosurgery diode for various field sizes, depth, and beam energies. Dynamic dosimetric gap and leaf transmission were measured with both low (6 MV and 6 MV SRS) and high energy (15 MV) photon beams. The conformity and step effect were studied with a series of circular beams with various radius. Results: The penumbra of HD 120 MLC was measured to be 0.25 cm for 6 MV at 1.5 cm depth with 2 cm × 2 cm field size. It increases to 0.49 cm for 30 cm × 30 cm field size. For 15 MV at 3 cm depth, the penumbra increases from 0.36 cm at 2 cm × 2 cm to 0.60 at 30 cm × 30 cm. For other field sizes and depth, the penumbra values are listed in Table I. The dynamic dosimetric gap was 0.86 cm for 6 MV and 0.98 mm for 15 MV. The leaf transmission factors were 1.17% for 6 MV and 1.33% for 15 MV. Conclusion: HD 120 MLC provides finer beam penumbra, smaller dynamic dose gap, and lower leaf transmission compared to conventional Millennium MLC, and can thus potentially improve the conformality of SRS/SBRT treatments.

AB - Purpose: A new type of high‐definition multi‐leaf collimator (HD 120 MLC, Varian Medical Systems) is being introduced into clinical practice to improve the conformality of stereotactic radiation therapy and radiosurgery. Its leaf width at isocenter is 2.5 mm. The interface and casing are the same as Millennium 120 MLC so it can be easily fit inside the gantry for better clearance and efficiency. This study investigated the dosimetric characteristics of this new micro MLC. Method and Materials: The HD 120 MLC was installed in a Novalis TX dedicated image‐guided SRS/SBRT machine. Beam penumbra (defined between 20–80%) was measured with a scanning radiosurgery diode for various field sizes, depth, and beam energies. Dynamic dosimetric gap and leaf transmission were measured with both low (6 MV and 6 MV SRS) and high energy (15 MV) photon beams. The conformity and step effect were studied with a series of circular beams with various radius. Results: The penumbra of HD 120 MLC was measured to be 0.25 cm for 6 MV at 1.5 cm depth with 2 cm × 2 cm field size. It increases to 0.49 cm for 30 cm × 30 cm field size. For 15 MV at 3 cm depth, the penumbra increases from 0.36 cm at 2 cm × 2 cm to 0.60 at 30 cm × 30 cm. For other field sizes and depth, the penumbra values are listed in Table I. The dynamic dosimetric gap was 0.86 cm for 6 MV and 0.98 mm for 15 MV. The leaf transmission factors were 1.17% for 6 MV and 1.33% for 15 MV. Conclusion: HD 120 MLC provides finer beam penumbra, smaller dynamic dose gap, and lower leaf transmission compared to conventional Millennium MLC, and can thus potentially improve the conformality of SRS/SBRT treatments.

UR - http://www.scopus.com/inward/record.url?scp=85024779849&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85024779849&partnerID=8YFLogxK

U2 - 10.1118/1.2962194

DO - 10.1118/1.2962194

M3 - Article

VL - 35

SP - 2827

JO - Medical Physics

JF - Medical Physics

SN - 0094-2405

IS - 6

ER -