Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles

Research output: Contribution to journalArticle

201 Citations (Scopus)

Abstract

As a key component of the innate immunity system, human cathelicidin LL-37 plays an essential role in protecting humans against infectious diseases. To elucidate the structural basis for its targeting bacterial membrane, we have determined the high quality structure of 13C,15N-labeled LL-37 by three-dimensional triple-resonance NMR spectroscopy, because two-dimensional 1H NMR did not provide sufficient spectral resolution. The structure of LL-37 in SDS micelles is composed of a curved amphipathic helix-bend-helix motif spanning residues 2-31 followed by a disordered C-terminal tail. The helical bend is located between residues Gly-14 and Glu-16. Similar chemical shifts and 15N nuclear Overhauser effect (NOE) patterns of the peptide in complex with dioctanoylphosphatidylglycerol (D8PG) micelles indicate a similar structure. The aromatic rings of Phe-5, Phe-6, Phe-17, and Phe-27 of LL-37, as well as arginines, showed intermolecular NOE cross-peaks with D8PG, providing direct evidence for the association of the entire amphipathic helix with anionic lipid micelles. The structure of LL-37 serves as a model for understanding the structure and function relationship of homologous primate cathelicidins. Using synthetic peptides, we also identified the smallest antibacterial peptide KR-12 corresponding to residues 18-29 of LL-37. Importantly, KR-12 displayed a selective toxic effect on bacteria but not human cells. NMR structural analysis revealed a short three-turn amphipathic helix rich in positively charged side chains, allowing for effective competition for anionic phosphatidylglycerols in bacterial membranes. KR-12 may be a useful peptide template for developing novel antimicrobial agents of therapeutic use.

Original languageEnglish (US)
Pages (from-to)32637-32643
Number of pages7
JournalJournal of Biological Chemistry
Volume283
Issue number47
DOIs
StatePublished - Nov 21 2008

Fingerprint

Micelles
Lipids
Peptides
Cathelicidins
Nuclear magnetic resonance
Membranes
Phosphatidylglycerols
Poisons
Spectral resolution
Chemical shift
Therapeutic Uses
Anti-Infective Agents
Innate Immunity
Structural analysis
Primates
Nuclear magnetic resonance spectroscopy
Communicable Diseases
Arginine
Tail
Bacteria

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Cite this

Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles. / Wang, Guangshun.

In: Journal of Biological Chemistry, Vol. 283, No. 47, 21.11.2008, p. 32637-32643.

Research output: Contribution to journalArticle

@article{804cbbbd1be2440782a574f20924479e,
title = "Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles",
abstract = "As a key component of the innate immunity system, human cathelicidin LL-37 plays an essential role in protecting humans against infectious diseases. To elucidate the structural basis for its targeting bacterial membrane, we have determined the high quality structure of 13C,15N-labeled LL-37 by three-dimensional triple-resonance NMR spectroscopy, because two-dimensional 1H NMR did not provide sufficient spectral resolution. The structure of LL-37 in SDS micelles is composed of a curved amphipathic helix-bend-helix motif spanning residues 2-31 followed by a disordered C-terminal tail. The helical bend is located between residues Gly-14 and Glu-16. Similar chemical shifts and 15N nuclear Overhauser effect (NOE) patterns of the peptide in complex with dioctanoylphosphatidylglycerol (D8PG) micelles indicate a similar structure. The aromatic rings of Phe-5, Phe-6, Phe-17, and Phe-27 of LL-37, as well as arginines, showed intermolecular NOE cross-peaks with D8PG, providing direct evidence for the association of the entire amphipathic helix with anionic lipid micelles. The structure of LL-37 serves as a model for understanding the structure and function relationship of homologous primate cathelicidins. Using synthetic peptides, we also identified the smallest antibacterial peptide KR-12 corresponding to residues 18-29 of LL-37. Importantly, KR-12 displayed a selective toxic effect on bacteria but not human cells. NMR structural analysis revealed a short three-turn amphipathic helix rich in positively charged side chains, allowing for effective competition for anionic phosphatidylglycerols in bacterial membranes. KR-12 may be a useful peptide template for developing novel antimicrobial agents of therapeutic use.",
author = "Guangshun Wang",
year = "2008",
month = "11",
day = "21",
doi = "10.1074/jbc.M805533200",
language = "English (US)",
volume = "283",
pages = "32637--32643",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "47",

}

TY - JOUR

T1 - Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles

AU - Wang, Guangshun

PY - 2008/11/21

Y1 - 2008/11/21

N2 - As a key component of the innate immunity system, human cathelicidin LL-37 plays an essential role in protecting humans against infectious diseases. To elucidate the structural basis for its targeting bacterial membrane, we have determined the high quality structure of 13C,15N-labeled LL-37 by three-dimensional triple-resonance NMR spectroscopy, because two-dimensional 1H NMR did not provide sufficient spectral resolution. The structure of LL-37 in SDS micelles is composed of a curved amphipathic helix-bend-helix motif spanning residues 2-31 followed by a disordered C-terminal tail. The helical bend is located between residues Gly-14 and Glu-16. Similar chemical shifts and 15N nuclear Overhauser effect (NOE) patterns of the peptide in complex with dioctanoylphosphatidylglycerol (D8PG) micelles indicate a similar structure. The aromatic rings of Phe-5, Phe-6, Phe-17, and Phe-27 of LL-37, as well as arginines, showed intermolecular NOE cross-peaks with D8PG, providing direct evidence for the association of the entire amphipathic helix with anionic lipid micelles. The structure of LL-37 serves as a model for understanding the structure and function relationship of homologous primate cathelicidins. Using synthetic peptides, we also identified the smallest antibacterial peptide KR-12 corresponding to residues 18-29 of LL-37. Importantly, KR-12 displayed a selective toxic effect on bacteria but not human cells. NMR structural analysis revealed a short three-turn amphipathic helix rich in positively charged side chains, allowing for effective competition for anionic phosphatidylglycerols in bacterial membranes. KR-12 may be a useful peptide template for developing novel antimicrobial agents of therapeutic use.

AB - As a key component of the innate immunity system, human cathelicidin LL-37 plays an essential role in protecting humans against infectious diseases. To elucidate the structural basis for its targeting bacterial membrane, we have determined the high quality structure of 13C,15N-labeled LL-37 by three-dimensional triple-resonance NMR spectroscopy, because two-dimensional 1H NMR did not provide sufficient spectral resolution. The structure of LL-37 in SDS micelles is composed of a curved amphipathic helix-bend-helix motif spanning residues 2-31 followed by a disordered C-terminal tail. The helical bend is located between residues Gly-14 and Glu-16. Similar chemical shifts and 15N nuclear Overhauser effect (NOE) patterns of the peptide in complex with dioctanoylphosphatidylglycerol (D8PG) micelles indicate a similar structure. The aromatic rings of Phe-5, Phe-6, Phe-17, and Phe-27 of LL-37, as well as arginines, showed intermolecular NOE cross-peaks with D8PG, providing direct evidence for the association of the entire amphipathic helix with anionic lipid micelles. The structure of LL-37 serves as a model for understanding the structure and function relationship of homologous primate cathelicidins. Using synthetic peptides, we also identified the smallest antibacterial peptide KR-12 corresponding to residues 18-29 of LL-37. Importantly, KR-12 displayed a selective toxic effect on bacteria but not human cells. NMR structural analysis revealed a short three-turn amphipathic helix rich in positively charged side chains, allowing for effective competition for anionic phosphatidylglycerols in bacterial membranes. KR-12 may be a useful peptide template for developing novel antimicrobial agents of therapeutic use.

UR - http://www.scopus.com/inward/record.url?scp=57749088664&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=57749088664&partnerID=8YFLogxK

U2 - 10.1074/jbc.M805533200

DO - 10.1074/jbc.M805533200

M3 - Article

C2 - 18818205

AN - SCOPUS:57749088664

VL - 283

SP - 32637

EP - 32643

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 47

ER -