Structural and Functional Similarity between the Bacterial Type III Secretion System Needle Protein PrgI and the Eukaryotic Apoptosis Bcl-2 Proteins

Matthew D. Shortridge, Robert Powers

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

Background:Functional similarity is challenging to identify when global sequence and structure similarity is low. Active-sites or functionally relevant regions are evolutionarily more stable relative to the remainder of a protein structure and provide an alternative means to identify potential functional similarity between proteins. We recently developed the FAST-NMR methodology to discover biochemical functions or functional hypotheses of proteins of unknown function by experimentally identifying ligand binding sites. FAST-NMR utilizes our CPASS software and database to assign a function based on a similarity in the structure and sequence of ligand binding sites between proteins of known and unknown function.Methodology/Principal Findings:The PrgI protein from Salmonella typhimurium forms the needle complex in the type III secretion system (T3SS). A FAST-NMR screen identified a similarity between the ligand binding sites of PrgI and the Bcl-2 apoptosis protein Bcl-xL. These ligand binding sites correlate with known protein-protein binding interfaces required for oligomerization. Both proteins form membrane pores through this oligomerization to release effector proteins to stimulate cell death. Structural analysis indicates an overlap between the PrgI structure and the pore forming motif of Bcl-xL. A sequence alignment indicates conservation between the PrgI and Bcl-xL ligand binding sites and pore formation regions. This active-site similarity was then used to verify that chelerythrine, a known Bcl-xL inhibitor, also binds PrgI.Conclusions/Significance:A structural and functional relationship between the bacterial T3SS and eukaryotic apoptosis was identified using our FAST-NMR ligand affinity screen in combination with a bioinformatic analysis based on our CPASS program. A similarity between PrgI and Bcl-xL is not readily apparent using traditional global sequence and structure analysis, but was only identified because of conservation in ligand binding sites. These results demonstrate the unique opportunity that ligand-binding sites provide for the identification of functional relationships when global sequence and structural information is limited.

Original languageEnglish (US)
Article numbere0007442
JournalPloS one
Volume4
Issue number10
DOIs
StatePublished - Dec 1 2009

Fingerprint

type III secretion system
Needles
apoptosis
binding sites
Apoptosis
Ligands
Binding Sites
Proteins
proteins
Nuclear magnetic resonance
Oligomerization
active sites
Catalytic Domain
Conservation
Type III Secretion Systems
ligands
Sequence Alignment
protein binding
sequence alignment
Salmonella

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Cite this

Structural and Functional Similarity between the Bacterial Type III Secretion System Needle Protein PrgI and the Eukaryotic Apoptosis Bcl-2 Proteins. / Shortridge, Matthew D.; Powers, Robert.

In: PloS one, Vol. 4, No. 10, e0007442, 01.12.2009.

Research output: Contribution to journalArticle

@article{174e8e8108734cc0a4587aed11421da0,
title = "Structural and Functional Similarity between the Bacterial Type III Secretion System Needle Protein PrgI and the Eukaryotic Apoptosis Bcl-2 Proteins",
abstract = "Background:Functional similarity is challenging to identify when global sequence and structure similarity is low. Active-sites or functionally relevant regions are evolutionarily more stable relative to the remainder of a protein structure and provide an alternative means to identify potential functional similarity between proteins. We recently developed the FAST-NMR methodology to discover biochemical functions or functional hypotheses of proteins of unknown function by experimentally identifying ligand binding sites. FAST-NMR utilizes our CPASS software and database to assign a function based on a similarity in the structure and sequence of ligand binding sites between proteins of known and unknown function.Methodology/Principal Findings:The PrgI protein from Salmonella typhimurium forms the needle complex in the type III secretion system (T3SS). A FAST-NMR screen identified a similarity between the ligand binding sites of PrgI and the Bcl-2 apoptosis protein Bcl-xL. These ligand binding sites correlate with known protein-protein binding interfaces required for oligomerization. Both proteins form membrane pores through this oligomerization to release effector proteins to stimulate cell death. Structural analysis indicates an overlap between the PrgI structure and the pore forming motif of Bcl-xL. A sequence alignment indicates conservation between the PrgI and Bcl-xL ligand binding sites and pore formation regions. This active-site similarity was then used to verify that chelerythrine, a known Bcl-xL inhibitor, also binds PrgI.Conclusions/Significance:A structural and functional relationship between the bacterial T3SS and eukaryotic apoptosis was identified using our FAST-NMR ligand affinity screen in combination with a bioinformatic analysis based on our CPASS program. A similarity between PrgI and Bcl-xL is not readily apparent using traditional global sequence and structure analysis, but was only identified because of conservation in ligand binding sites. These results demonstrate the unique opportunity that ligand-binding sites provide for the identification of functional relationships when global sequence and structural information is limited.",
author = "Shortridge, {Matthew D.} and Robert Powers",
year = "2009",
month = "12",
day = "1",
doi = "10.1371/journal.pone.0007442",
language = "English (US)",
volume = "4",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "10",

}

TY - JOUR

T1 - Structural and Functional Similarity between the Bacterial Type III Secretion System Needle Protein PrgI and the Eukaryotic Apoptosis Bcl-2 Proteins

AU - Shortridge, Matthew D.

AU - Powers, Robert

PY - 2009/12/1

Y1 - 2009/12/1

N2 - Background:Functional similarity is challenging to identify when global sequence and structure similarity is low. Active-sites or functionally relevant regions are evolutionarily more stable relative to the remainder of a protein structure and provide an alternative means to identify potential functional similarity between proteins. We recently developed the FAST-NMR methodology to discover biochemical functions or functional hypotheses of proteins of unknown function by experimentally identifying ligand binding sites. FAST-NMR utilizes our CPASS software and database to assign a function based on a similarity in the structure and sequence of ligand binding sites between proteins of known and unknown function.Methodology/Principal Findings:The PrgI protein from Salmonella typhimurium forms the needle complex in the type III secretion system (T3SS). A FAST-NMR screen identified a similarity between the ligand binding sites of PrgI and the Bcl-2 apoptosis protein Bcl-xL. These ligand binding sites correlate with known protein-protein binding interfaces required for oligomerization. Both proteins form membrane pores through this oligomerization to release effector proteins to stimulate cell death. Structural analysis indicates an overlap between the PrgI structure and the pore forming motif of Bcl-xL. A sequence alignment indicates conservation between the PrgI and Bcl-xL ligand binding sites and pore formation regions. This active-site similarity was then used to verify that chelerythrine, a known Bcl-xL inhibitor, also binds PrgI.Conclusions/Significance:A structural and functional relationship between the bacterial T3SS and eukaryotic apoptosis was identified using our FAST-NMR ligand affinity screen in combination with a bioinformatic analysis based on our CPASS program. A similarity between PrgI and Bcl-xL is not readily apparent using traditional global sequence and structure analysis, but was only identified because of conservation in ligand binding sites. These results demonstrate the unique opportunity that ligand-binding sites provide for the identification of functional relationships when global sequence and structural information is limited.

AB - Background:Functional similarity is challenging to identify when global sequence and structure similarity is low. Active-sites or functionally relevant regions are evolutionarily more stable relative to the remainder of a protein structure and provide an alternative means to identify potential functional similarity between proteins. We recently developed the FAST-NMR methodology to discover biochemical functions or functional hypotheses of proteins of unknown function by experimentally identifying ligand binding sites. FAST-NMR utilizes our CPASS software and database to assign a function based on a similarity in the structure and sequence of ligand binding sites between proteins of known and unknown function.Methodology/Principal Findings:The PrgI protein from Salmonella typhimurium forms the needle complex in the type III secretion system (T3SS). A FAST-NMR screen identified a similarity between the ligand binding sites of PrgI and the Bcl-2 apoptosis protein Bcl-xL. These ligand binding sites correlate with known protein-protein binding interfaces required for oligomerization. Both proteins form membrane pores through this oligomerization to release effector proteins to stimulate cell death. Structural analysis indicates an overlap between the PrgI structure and the pore forming motif of Bcl-xL. A sequence alignment indicates conservation between the PrgI and Bcl-xL ligand binding sites and pore formation regions. This active-site similarity was then used to verify that chelerythrine, a known Bcl-xL inhibitor, also binds PrgI.Conclusions/Significance:A structural and functional relationship between the bacterial T3SS and eukaryotic apoptosis was identified using our FAST-NMR ligand affinity screen in combination with a bioinformatic analysis based on our CPASS program. A similarity between PrgI and Bcl-xL is not readily apparent using traditional global sequence and structure analysis, but was only identified because of conservation in ligand binding sites. These results demonstrate the unique opportunity that ligand-binding sites provide for the identification of functional relationships when global sequence and structural information is limited.

UR - http://www.scopus.com/inward/record.url?scp=77949324326&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77949324326&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0007442

DO - 10.1371/journal.pone.0007442

M3 - Article

C2 - 19823588

AN - SCOPUS:77949324326

VL - 4

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 10

M1 - e0007442

ER -