STAT1 Regulates Human Glutaminase 1 Promoter Activity through Multiple Binding Sites in HIV-1 Infected Macrophages

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

Mononuclear phagocytes (MP, macrophages and microglia), the main targets of HIV-1 infection in the brain, play a pathogenic role in HIV-associated neurocognitive disorders (HAND) through the production and release of various soluble neurotoxic factors including glutamate. We have previously reported that glutaminase (GLS), the glutamate-generating enzyme, is upregulated in HIV-1 infected MP and in the brain tissues of HIV dementia individuals, and that HIV-1 or interferon-α (IFN-α) regulates human glutaminase 1 (GLS1) promoter through signal transducer and activator of transcription 1 (STAT1) phosphorylation in macrophages. However, there are multiple putative STAT1 binding sites in human GLS1 promoter, the exact molecular mechanism of how HIV-1 or IFN-α regulates human GLS1 promoter remains unclear. To further study the function of the putative STAT1 binding sites, we mutated the sequence of each binding site to ACTAGTCTC and found that six mutants (mut 1,3,4,5,7,8) had significantly higher promoter activity and two mutants (mut 2 and mut 6) completely lost the promoter activity compared with the wild type. To determine whether sites 2 and 6 could interfere with other inhibitory sites, particularly the nearby inhibitory sites 3 and 5, we made double mutants dmut 2/3 and dmut 5/6, and found that both the double mutants had significantly higher activity than the wild type, indicating that sites 3 and 5 are critical inhibitory elements, while sites 2 and 6 are excitatory elements. ChIP assay verified that STAT1 could bind with sites 2/3 and 5/6 within human GLS1 promoter in IFN-α stimulated or HIV-1-infected monocyte-derived macrophages. Interestingly, we found that rat Gls1 promoter was regulated through a similar way as human GLS1 promoter. Together, our data identified critical elements that regulate GLS1 promoter activity.

Original languageEnglish (US)
Article numbere76581
JournalPloS one
Volume8
Issue number9
DOIs
StatePublished - Sep 24 2013

Fingerprint

STAT1 Transcription Factor
glutaminase
Glutaminase
Macrophages
Human immunodeficiency virus 1
HIV-1
binding sites
macrophages
transcription (genetics)
Binding Sites
promoter regions
Interferons
interferons
mutants
Glutamic Acid
Brain
glutamates
AIDS Dementia Complex
Phosphorylation
Microglia

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)

Cite this

STAT1 Regulates Human Glutaminase 1 Promoter Activity through Multiple Binding Sites in HIV-1 Infected Macrophages. / Zhao, Lixia; Huang, Yunlong; Zheng, Jialin C.

In: PloS one, Vol. 8, No. 9, e76581, 24.09.2013.

Research output: Contribution to journalArticle

@article{57e9c8f12a2a4fbdba58dddbf36f958d,
title = "STAT1 Regulates Human Glutaminase 1 Promoter Activity through Multiple Binding Sites in HIV-1 Infected Macrophages",
abstract = "Mononuclear phagocytes (MP, macrophages and microglia), the main targets of HIV-1 infection in the brain, play a pathogenic role in HIV-associated neurocognitive disorders (HAND) through the production and release of various soluble neurotoxic factors including glutamate. We have previously reported that glutaminase (GLS), the glutamate-generating enzyme, is upregulated in HIV-1 infected MP and in the brain tissues of HIV dementia individuals, and that HIV-1 or interferon-α (IFN-α) regulates human glutaminase 1 (GLS1) promoter through signal transducer and activator of transcription 1 (STAT1) phosphorylation in macrophages. However, there are multiple putative STAT1 binding sites in human GLS1 promoter, the exact molecular mechanism of how HIV-1 or IFN-α regulates human GLS1 promoter remains unclear. To further study the function of the putative STAT1 binding sites, we mutated the sequence of each binding site to ACTAGTCTC and found that six mutants (mut 1,3,4,5,7,8) had significantly higher promoter activity and two mutants (mut 2 and mut 6) completely lost the promoter activity compared with the wild type. To determine whether sites 2 and 6 could interfere with other inhibitory sites, particularly the nearby inhibitory sites 3 and 5, we made double mutants dmut 2/3 and dmut 5/6, and found that both the double mutants had significantly higher activity than the wild type, indicating that sites 3 and 5 are critical inhibitory elements, while sites 2 and 6 are excitatory elements. ChIP assay verified that STAT1 could bind with sites 2/3 and 5/6 within human GLS1 promoter in IFN-α stimulated or HIV-1-infected monocyte-derived macrophages. Interestingly, we found that rat Gls1 promoter was regulated through a similar way as human GLS1 promoter. Together, our data identified critical elements that regulate GLS1 promoter activity.",
author = "Lixia Zhao and Yunlong Huang and Zheng, {Jialin C}",
year = "2013",
month = "9",
day = "24",
doi = "10.1371/journal.pone.0076581",
language = "English (US)",
volume = "8",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "9",

}

TY - JOUR

T1 - STAT1 Regulates Human Glutaminase 1 Promoter Activity through Multiple Binding Sites in HIV-1 Infected Macrophages

AU - Zhao, Lixia

AU - Huang, Yunlong

AU - Zheng, Jialin C

PY - 2013/9/24

Y1 - 2013/9/24

N2 - Mononuclear phagocytes (MP, macrophages and microglia), the main targets of HIV-1 infection in the brain, play a pathogenic role in HIV-associated neurocognitive disorders (HAND) through the production and release of various soluble neurotoxic factors including glutamate. We have previously reported that glutaminase (GLS), the glutamate-generating enzyme, is upregulated in HIV-1 infected MP and in the brain tissues of HIV dementia individuals, and that HIV-1 or interferon-α (IFN-α) regulates human glutaminase 1 (GLS1) promoter through signal transducer and activator of transcription 1 (STAT1) phosphorylation in macrophages. However, there are multiple putative STAT1 binding sites in human GLS1 promoter, the exact molecular mechanism of how HIV-1 or IFN-α regulates human GLS1 promoter remains unclear. To further study the function of the putative STAT1 binding sites, we mutated the sequence of each binding site to ACTAGTCTC and found that six mutants (mut 1,3,4,5,7,8) had significantly higher promoter activity and two mutants (mut 2 and mut 6) completely lost the promoter activity compared with the wild type. To determine whether sites 2 and 6 could interfere with other inhibitory sites, particularly the nearby inhibitory sites 3 and 5, we made double mutants dmut 2/3 and dmut 5/6, and found that both the double mutants had significantly higher activity than the wild type, indicating that sites 3 and 5 are critical inhibitory elements, while sites 2 and 6 are excitatory elements. ChIP assay verified that STAT1 could bind with sites 2/3 and 5/6 within human GLS1 promoter in IFN-α stimulated or HIV-1-infected monocyte-derived macrophages. Interestingly, we found that rat Gls1 promoter was regulated through a similar way as human GLS1 promoter. Together, our data identified critical elements that regulate GLS1 promoter activity.

AB - Mononuclear phagocytes (MP, macrophages and microglia), the main targets of HIV-1 infection in the brain, play a pathogenic role in HIV-associated neurocognitive disorders (HAND) through the production and release of various soluble neurotoxic factors including glutamate. We have previously reported that glutaminase (GLS), the glutamate-generating enzyme, is upregulated in HIV-1 infected MP and in the brain tissues of HIV dementia individuals, and that HIV-1 or interferon-α (IFN-α) regulates human glutaminase 1 (GLS1) promoter through signal transducer and activator of transcription 1 (STAT1) phosphorylation in macrophages. However, there are multiple putative STAT1 binding sites in human GLS1 promoter, the exact molecular mechanism of how HIV-1 or IFN-α regulates human GLS1 promoter remains unclear. To further study the function of the putative STAT1 binding sites, we mutated the sequence of each binding site to ACTAGTCTC and found that six mutants (mut 1,3,4,5,7,8) had significantly higher promoter activity and two mutants (mut 2 and mut 6) completely lost the promoter activity compared with the wild type. To determine whether sites 2 and 6 could interfere with other inhibitory sites, particularly the nearby inhibitory sites 3 and 5, we made double mutants dmut 2/3 and dmut 5/6, and found that both the double mutants had significantly higher activity than the wild type, indicating that sites 3 and 5 are critical inhibitory elements, while sites 2 and 6 are excitatory elements. ChIP assay verified that STAT1 could bind with sites 2/3 and 5/6 within human GLS1 promoter in IFN-α stimulated or HIV-1-infected monocyte-derived macrophages. Interestingly, we found that rat Gls1 promoter was regulated through a similar way as human GLS1 promoter. Together, our data identified critical elements that regulate GLS1 promoter activity.

UR - http://www.scopus.com/inward/record.url?scp=84884557111&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84884557111&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0076581

DO - 10.1371/journal.pone.0076581

M3 - Article

VL - 8

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 9

M1 - e76581

ER -