Simultaneous whole-cell recordings from photoreceptors and second-order neurons in an amphibian retinal slice preparation

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

One of the central tasks in retinal neuroscience is to understand the circuitry of retinal neurons and how those connections are responsible for shaping the signals transmitted to the brain. Photons are detected in the retina by rod and cone photoreceptors, which convert that energy into an electrical signal, transmitting it to other retinal neurons, where it is processed and communicated to central targets in the brain via the optic nerve. Important early insights into retinal circuitry and visual processing came from the histological studies of Cajal and, later, from electrophysiological recordings of the spiking activity of retinal ganglion cells--the output cells of the retina. A detailed understanding of visual processing in the retina requires an understanding of the signaling at each step in the pathway from photoreceptor to retinal ganglion cell. However, many retinal cell types are buried deep in the tissue and therefore relatively inaccessible for electrophysiological recording. This limitation can be overcome by working with vertical slices, in which cells residing within each of the retinal layers are clearly visible and accessible for electrophysiological recording. Here, we describe a method for making vertical sections of retinas from larval tiger salamanders (Ambystoma tigrinum). While this preparation was originally developed for recordings with sharp microelectrodes, we describe a method for dual whole-cell voltage clamp recordings from photoreceptors and second-order horizontal and bipolar cells in which we manipulate the photoreceptor's membrane potential while simultaneously recording post-synaptic responses in horizontal or bipolar cells. The photoreceptors of the tiger salamander are considerably larger than those of mammalian species, making this an ideal preparation in which to undertake this technically challenging experimental approach. These experiments are described with an eye toward probing the signaling properties of the synaptic ribbon--a specialized synaptic structure found in only a handful of neurons, including rod and cone photoreceptors, that is well suited for maintaining a high rate of tonic neurotransmitter release--and how it contributes to the unique signaling properties of this first retinal synapse.

Original languageEnglish (US)
JournalJournal of visualized experiments : JoVE
Issue number76
DOIs
StatePublished - 2013

Fingerprint

Amphibians
Patch-Clamp Techniques
Neurons
Ambystoma
Retina
Cones
Brain
Retinal Cone Photoreceptor Cells
Retinal Neurons
Retinal Rod Photoreceptor Cells
Vertebrate Photoreceptor Cells
Retinal Ganglion Cells
Microelectrodes
Clamping devices
Processing
Neurotransmitter Agents
Optics
Photons
Cells
Tissue

ASJC Scopus subject areas

  • Neuroscience(all)
  • Chemical Engineering(all)
  • Immunology and Microbiology(all)
  • Biochemistry, Genetics and Molecular Biology(all)

Cite this

@article{fca70c6f4b5b4024822eefaec50e3541,
title = "Simultaneous whole-cell recordings from photoreceptors and second-order neurons in an amphibian retinal slice preparation",
abstract = "One of the central tasks in retinal neuroscience is to understand the circuitry of retinal neurons and how those connections are responsible for shaping the signals transmitted to the brain. Photons are detected in the retina by rod and cone photoreceptors, which convert that energy into an electrical signal, transmitting it to other retinal neurons, where it is processed and communicated to central targets in the brain via the optic nerve. Important early insights into retinal circuitry and visual processing came from the histological studies of Cajal and, later, from electrophysiological recordings of the spiking activity of retinal ganglion cells--the output cells of the retina. A detailed understanding of visual processing in the retina requires an understanding of the signaling at each step in the pathway from photoreceptor to retinal ganglion cell. However, many retinal cell types are buried deep in the tissue and therefore relatively inaccessible for electrophysiological recording. This limitation can be overcome by working with vertical slices, in which cells residing within each of the retinal layers are clearly visible and accessible for electrophysiological recording. Here, we describe a method for making vertical sections of retinas from larval tiger salamanders (Ambystoma tigrinum). While this preparation was originally developed for recordings with sharp microelectrodes, we describe a method for dual whole-cell voltage clamp recordings from photoreceptors and second-order horizontal and bipolar cells in which we manipulate the photoreceptor's membrane potential while simultaneously recording post-synaptic responses in horizontal or bipolar cells. The photoreceptors of the tiger salamander are considerably larger than those of mammalian species, making this an ideal preparation in which to undertake this technically challenging experimental approach. These experiments are described with an eye toward probing the signaling properties of the synaptic ribbon--a specialized synaptic structure found in only a handful of neurons, including rod and cone photoreceptors, that is well suited for maintaining a high rate of tonic neurotransmitter release--and how it contributes to the unique signaling properties of this first retinal synapse.",
author = "{Van Hook}, Matthew and Thoreson, {Wallace B}",
year = "2013",
doi = "10.3791/50007",
language = "English (US)",
journal = "Journal of Visualized Experiments",
issn = "1940-087X",
publisher = "MYJoVE Corporation",
number = "76",

}

TY - JOUR

T1 - Simultaneous whole-cell recordings from photoreceptors and second-order neurons in an amphibian retinal slice preparation

AU - Van Hook, Matthew

AU - Thoreson, Wallace B

PY - 2013

Y1 - 2013

N2 - One of the central tasks in retinal neuroscience is to understand the circuitry of retinal neurons and how those connections are responsible for shaping the signals transmitted to the brain. Photons are detected in the retina by rod and cone photoreceptors, which convert that energy into an electrical signal, transmitting it to other retinal neurons, where it is processed and communicated to central targets in the brain via the optic nerve. Important early insights into retinal circuitry and visual processing came from the histological studies of Cajal and, later, from electrophysiological recordings of the spiking activity of retinal ganglion cells--the output cells of the retina. A detailed understanding of visual processing in the retina requires an understanding of the signaling at each step in the pathway from photoreceptor to retinal ganglion cell. However, many retinal cell types are buried deep in the tissue and therefore relatively inaccessible for electrophysiological recording. This limitation can be overcome by working with vertical slices, in which cells residing within each of the retinal layers are clearly visible and accessible for electrophysiological recording. Here, we describe a method for making vertical sections of retinas from larval tiger salamanders (Ambystoma tigrinum). While this preparation was originally developed for recordings with sharp microelectrodes, we describe a method for dual whole-cell voltage clamp recordings from photoreceptors and second-order horizontal and bipolar cells in which we manipulate the photoreceptor's membrane potential while simultaneously recording post-synaptic responses in horizontal or bipolar cells. The photoreceptors of the tiger salamander are considerably larger than those of mammalian species, making this an ideal preparation in which to undertake this technically challenging experimental approach. These experiments are described with an eye toward probing the signaling properties of the synaptic ribbon--a specialized synaptic structure found in only a handful of neurons, including rod and cone photoreceptors, that is well suited for maintaining a high rate of tonic neurotransmitter release--and how it contributes to the unique signaling properties of this first retinal synapse.

AB - One of the central tasks in retinal neuroscience is to understand the circuitry of retinal neurons and how those connections are responsible for shaping the signals transmitted to the brain. Photons are detected in the retina by rod and cone photoreceptors, which convert that energy into an electrical signal, transmitting it to other retinal neurons, where it is processed and communicated to central targets in the brain via the optic nerve. Important early insights into retinal circuitry and visual processing came from the histological studies of Cajal and, later, from electrophysiological recordings of the spiking activity of retinal ganglion cells--the output cells of the retina. A detailed understanding of visual processing in the retina requires an understanding of the signaling at each step in the pathway from photoreceptor to retinal ganglion cell. However, many retinal cell types are buried deep in the tissue and therefore relatively inaccessible for electrophysiological recording. This limitation can be overcome by working with vertical slices, in which cells residing within each of the retinal layers are clearly visible and accessible for electrophysiological recording. Here, we describe a method for making vertical sections of retinas from larval tiger salamanders (Ambystoma tigrinum). While this preparation was originally developed for recordings with sharp microelectrodes, we describe a method for dual whole-cell voltage clamp recordings from photoreceptors and second-order horizontal and bipolar cells in which we manipulate the photoreceptor's membrane potential while simultaneously recording post-synaptic responses in horizontal or bipolar cells. The photoreceptors of the tiger salamander are considerably larger than those of mammalian species, making this an ideal preparation in which to undertake this technically challenging experimental approach. These experiments are described with an eye toward probing the signaling properties of the synaptic ribbon--a specialized synaptic structure found in only a handful of neurons, including rod and cone photoreceptors, that is well suited for maintaining a high rate of tonic neurotransmitter release--and how it contributes to the unique signaling properties of this first retinal synapse.

UR - http://www.scopus.com/inward/record.url?scp=85003220466&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85003220466&partnerID=8YFLogxK

U2 - 10.3791/50007

DO - 10.3791/50007

M3 - Article

JO - Journal of Visualized Experiments

JF - Journal of Visualized Experiments

SN - 1940-087X

IS - 76

ER -