Simultaneous measurement of friction and wear in hip simulators

Hani Haider, Joel N. Weisenburger, Kevin Lloyd Garvin

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

We propose and have evaluated a method to measure hip friction during wear testing on a popular multi-station hip simulator. A 6-degree-of-freedom load cell underneath the specimen sensed forces and torques during implant wear testing of simulated walking. This included internal-external and adduction-abduction rotations which are often neglected during friction testing on pendulum-type machines. Robust mathematical analysis and data processing provided friction estimates in three simultaneous orthogonal rotations, over extended multi-million cycle wear tests. We tested various bearing couples including metal-on-plastic, ceramic-on-plastic, and metal-on-metal material couples. In one test series, new and intentionally scratched CoCrMo 40-mm-diameter femoral heads were tested against conventional ultrahigh-molecular-weight polyethylene, highly cross-linked, and highly cross-linked with Vitamin E versions. The scratching significantly increased friction and doubled the wear of all groups. Before scratching, friction levels for the aforementioned plastic groups were 0.056 ± 0.0060, 0.062 ± 0.0080, and 0.070 ± 0.0045, respectively, but after scratching increased to 0.088 ± 0.018, 0.076 ± 0.0066, and 0.082 ± 0.0049, respectively, all statistically significant increases (p = 0.00059, 0.00005, 0.0115, respectively). In another test series of 44-mm femoral head diameter hips, metal-on-plastic hips with conventional ultrahigh-molecular-weight polyethylene showed the lowest friction at 0.045 ± 0.0085, followed by highly cross-linked with 0.046 ± 0.0035 (not significantly different). In a ceramic-on-plastic design with conventional ultrahigh-molecular-weight polyethylene, higher friction 0.079 ± 0.0070 was measured likely due to that ceramic surface being rougher than usual. Metal-on-metal hips were compared without and with a TiN coating, resulting in 0.049 ± 0.014 and 0.097 ± 0.020 friction factors, respectively (statistically significant, p < 0.001), and the coating wore away on all coated hips eventually. Higher friction mostly correlated with higher wear or damage to femoral heads or implant coatings, except for the highly cross-linked wear resistant ultrahigh-molecular-weight polyethylene which had slightly higher friction, confirming the same finding in other independent studies. This type of friction measurements can help screen for clamping and elevated wear of metal-on-metal and resurfacing total hip replacements, surgical malpositioning, and abraded and otherwise damaged surfaces.

Original languageEnglish (US)
Pages (from-to)373-388
Number of pages16
JournalProceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine
Volume230
Issue number5
DOIs
StatePublished - Jan 1 2016

Fingerprint

Simulators
Wear of materials
Friction
Ultrahigh molecular weight polyethylenes
Metals
Plastics
Coatings
Testing
Bearings (structural)
Vitamins
Degrees of freedom (mechanics)
Pendulums
Loads (forces)
Torque

Keywords

  • Friction
  • friction measurement or testing
  • hip biomechanics
  • hip simulators
  • tribology
  • wear analysis or testing

ASJC Scopus subject areas

  • Mechanical Engineering

Cite this

@article{ab564806386c4fa2be401eb9ac9f46cf,
title = "Simultaneous measurement of friction and wear in hip simulators",
abstract = "We propose and have evaluated a method to measure hip friction during wear testing on a popular multi-station hip simulator. A 6-degree-of-freedom load cell underneath the specimen sensed forces and torques during implant wear testing of simulated walking. This included internal-external and adduction-abduction rotations which are often neglected during friction testing on pendulum-type machines. Robust mathematical analysis and data processing provided friction estimates in three simultaneous orthogonal rotations, over extended multi-million cycle wear tests. We tested various bearing couples including metal-on-plastic, ceramic-on-plastic, and metal-on-metal material couples. In one test series, new and intentionally scratched CoCrMo 40-mm-diameter femoral heads were tested against conventional ultrahigh-molecular-weight polyethylene, highly cross-linked, and highly cross-linked with Vitamin E versions. The scratching significantly increased friction and doubled the wear of all groups. Before scratching, friction levels for the aforementioned plastic groups were 0.056 ± 0.0060, 0.062 ± 0.0080, and 0.070 ± 0.0045, respectively, but after scratching increased to 0.088 ± 0.018, 0.076 ± 0.0066, and 0.082 ± 0.0049, respectively, all statistically significant increases (p = 0.00059, 0.00005, 0.0115, respectively). In another test series of 44-mm femoral head diameter hips, metal-on-plastic hips with conventional ultrahigh-molecular-weight polyethylene showed the lowest friction at 0.045 ± 0.0085, followed by highly cross-linked with 0.046 ± 0.0035 (not significantly different). In a ceramic-on-plastic design with conventional ultrahigh-molecular-weight polyethylene, higher friction 0.079 ± 0.0070 was measured likely due to that ceramic surface being rougher than usual. Metal-on-metal hips were compared without and with a TiN coating, resulting in 0.049 ± 0.014 and 0.097 ± 0.020 friction factors, respectively (statistically significant, p < 0.001), and the coating wore away on all coated hips eventually. Higher friction mostly correlated with higher wear or damage to femoral heads or implant coatings, except for the highly cross-linked wear resistant ultrahigh-molecular-weight polyethylene which had slightly higher friction, confirming the same finding in other independent studies. This type of friction measurements can help screen for clamping and elevated wear of metal-on-metal and resurfacing total hip replacements, surgical malpositioning, and abraded and otherwise damaged surfaces.",
keywords = "Friction, friction measurement or testing, hip biomechanics, hip simulators, tribology, wear analysis or testing",
author = "Hani Haider and Weisenburger, {Joel N.} and Garvin, {Kevin Lloyd}",
year = "2016",
month = "1",
day = "1",
doi = "10.1177/0954411916644476",
language = "English (US)",
volume = "230",
pages = "373--388",
journal = "Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine",
issn = "0954-4119",
publisher = "SAGE Publications Ltd",
number = "5",

}

TY - JOUR

T1 - Simultaneous measurement of friction and wear in hip simulators

AU - Haider, Hani

AU - Weisenburger, Joel N.

AU - Garvin, Kevin Lloyd

PY - 2016/1/1

Y1 - 2016/1/1

N2 - We propose and have evaluated a method to measure hip friction during wear testing on a popular multi-station hip simulator. A 6-degree-of-freedom load cell underneath the specimen sensed forces and torques during implant wear testing of simulated walking. This included internal-external and adduction-abduction rotations which are often neglected during friction testing on pendulum-type machines. Robust mathematical analysis and data processing provided friction estimates in three simultaneous orthogonal rotations, over extended multi-million cycle wear tests. We tested various bearing couples including metal-on-plastic, ceramic-on-plastic, and metal-on-metal material couples. In one test series, new and intentionally scratched CoCrMo 40-mm-diameter femoral heads were tested against conventional ultrahigh-molecular-weight polyethylene, highly cross-linked, and highly cross-linked with Vitamin E versions. The scratching significantly increased friction and doubled the wear of all groups. Before scratching, friction levels for the aforementioned plastic groups were 0.056 ± 0.0060, 0.062 ± 0.0080, and 0.070 ± 0.0045, respectively, but after scratching increased to 0.088 ± 0.018, 0.076 ± 0.0066, and 0.082 ± 0.0049, respectively, all statistically significant increases (p = 0.00059, 0.00005, 0.0115, respectively). In another test series of 44-mm femoral head diameter hips, metal-on-plastic hips with conventional ultrahigh-molecular-weight polyethylene showed the lowest friction at 0.045 ± 0.0085, followed by highly cross-linked with 0.046 ± 0.0035 (not significantly different). In a ceramic-on-plastic design with conventional ultrahigh-molecular-weight polyethylene, higher friction 0.079 ± 0.0070 was measured likely due to that ceramic surface being rougher than usual. Metal-on-metal hips were compared without and with a TiN coating, resulting in 0.049 ± 0.014 and 0.097 ± 0.020 friction factors, respectively (statistically significant, p < 0.001), and the coating wore away on all coated hips eventually. Higher friction mostly correlated with higher wear or damage to femoral heads or implant coatings, except for the highly cross-linked wear resistant ultrahigh-molecular-weight polyethylene which had slightly higher friction, confirming the same finding in other independent studies. This type of friction measurements can help screen for clamping and elevated wear of metal-on-metal and resurfacing total hip replacements, surgical malpositioning, and abraded and otherwise damaged surfaces.

AB - We propose and have evaluated a method to measure hip friction during wear testing on a popular multi-station hip simulator. A 6-degree-of-freedom load cell underneath the specimen sensed forces and torques during implant wear testing of simulated walking. This included internal-external and adduction-abduction rotations which are often neglected during friction testing on pendulum-type machines. Robust mathematical analysis and data processing provided friction estimates in three simultaneous orthogonal rotations, over extended multi-million cycle wear tests. We tested various bearing couples including metal-on-plastic, ceramic-on-plastic, and metal-on-metal material couples. In one test series, new and intentionally scratched CoCrMo 40-mm-diameter femoral heads were tested against conventional ultrahigh-molecular-weight polyethylene, highly cross-linked, and highly cross-linked with Vitamin E versions. The scratching significantly increased friction and doubled the wear of all groups. Before scratching, friction levels for the aforementioned plastic groups were 0.056 ± 0.0060, 0.062 ± 0.0080, and 0.070 ± 0.0045, respectively, but after scratching increased to 0.088 ± 0.018, 0.076 ± 0.0066, and 0.082 ± 0.0049, respectively, all statistically significant increases (p = 0.00059, 0.00005, 0.0115, respectively). In another test series of 44-mm femoral head diameter hips, metal-on-plastic hips with conventional ultrahigh-molecular-weight polyethylene showed the lowest friction at 0.045 ± 0.0085, followed by highly cross-linked with 0.046 ± 0.0035 (not significantly different). In a ceramic-on-plastic design with conventional ultrahigh-molecular-weight polyethylene, higher friction 0.079 ± 0.0070 was measured likely due to that ceramic surface being rougher than usual. Metal-on-metal hips were compared without and with a TiN coating, resulting in 0.049 ± 0.014 and 0.097 ± 0.020 friction factors, respectively (statistically significant, p < 0.001), and the coating wore away on all coated hips eventually. Higher friction mostly correlated with higher wear or damage to femoral heads or implant coatings, except for the highly cross-linked wear resistant ultrahigh-molecular-weight polyethylene which had slightly higher friction, confirming the same finding in other independent studies. This type of friction measurements can help screen for clamping and elevated wear of metal-on-metal and resurfacing total hip replacements, surgical malpositioning, and abraded and otherwise damaged surfaces.

KW - Friction

KW - friction measurement or testing

KW - hip biomechanics

KW - hip simulators

KW - tribology

KW - wear analysis or testing

UR - http://www.scopus.com/inward/record.url?scp=84966642612&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84966642612&partnerID=8YFLogxK

U2 - 10.1177/0954411916644476

DO - 10.1177/0954411916644476

M3 - Article

C2 - 27160558

AN - SCOPUS:84966642612

VL - 230

SP - 373

EP - 388

JO - Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine

JF - Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine

SN - 0954-4119

IS - 5

ER -