Selective location of acceptors for botulinum neurotoxin a in the central and peripheral nervous systems

Jennifer D Black, J. O. Dolly

Research output: Contribution to journalArticle

74 Citations (Scopus)

Abstract

The main site of action for botulinum neurotoxin is cholinergic motor nerve terminals where specific acceptors concentrate the toxin on the cell surface, thereby facilitating its internalization and inactivation of a component essential for transmitter release. In this study, the interaction in vitro of [125I]botulinum neurotoxin type A with central and peripheral nerve terminals of different types was investigated using Ultrofilm and electron-microscope autoradiography. It was found that: (i) The neurotoxin binds to synapse-rich areas of rat brain, particularly in the hippocampus and cerebellum; identity of the neuron types labelled is unclear although cholinergic nerves seem to be labelled, perhaps not exclusively, in many areas, (ii) Toxin uptake at central nerve terminals appears to be minimal and its penetration into intact brain slices is restricted; this may account for the toxin's lower central toxicity. (iii) Selective labelling of cholinergic nerves but not purinergic, peptidergic or adrenergic nerve terminals in mouse ileum suggests that the toxin may be a specific marker for cholinergic nerves in the periphery. Based on these localization studies and published pharmacological observations, it is concluded that efficient toxin-induced blockade of neurotransmission depends on the presence of specific acceptors of high affinity for the toxin and of an effective neuronal uptake mechanism. Inhibition of the release of numerous transmitters from different kinds of nerve terminals lacking one of these features can be produced by high toxin concentrations when uptake occurs via low affinity acceptors or by non-specific means. Notably, this widespread action of the toxin indicates the occurrence of a common intracellular target in several, possibly all, nerve types.

Original languageEnglish (US)
Pages (from-to)767-779
Number of pages13
JournalNeuroscience
Volume23
Issue number2
DOIs
StatePublished - Jan 1 1987

Fingerprint

Peripheral Nervous System
Neurotoxins
Cholinergic Agents
Central Nervous System
Type A Botulinum Toxins
Brain
Autoradiography
Peripheral Nerves
Ileum
Synaptic Transmission
Adrenergic Agents
Synapses
Cerebellum
Hippocampus
Pharmacology
Electrons
Neurons

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

Selective location of acceptors for botulinum neurotoxin a in the central and peripheral nervous systems. / Black, Jennifer D; Dolly, J. O.

In: Neuroscience, Vol. 23, No. 2, 01.01.1987, p. 767-779.

Research output: Contribution to journalArticle

@article{98789990d96c4f0c86f20e3971699105,
title = "Selective location of acceptors for botulinum neurotoxin a in the central and peripheral nervous systems",
abstract = "The main site of action for botulinum neurotoxin is cholinergic motor nerve terminals where specific acceptors concentrate the toxin on the cell surface, thereby facilitating its internalization and inactivation of a component essential for transmitter release. In this study, the interaction in vitro of [125I]botulinum neurotoxin type A with central and peripheral nerve terminals of different types was investigated using Ultrofilm and electron-microscope autoradiography. It was found that: (i) The neurotoxin binds to synapse-rich areas of rat brain, particularly in the hippocampus and cerebellum; identity of the neuron types labelled is unclear although cholinergic nerves seem to be labelled, perhaps not exclusively, in many areas, (ii) Toxin uptake at central nerve terminals appears to be minimal and its penetration into intact brain slices is restricted; this may account for the toxin's lower central toxicity. (iii) Selective labelling of cholinergic nerves but not purinergic, peptidergic or adrenergic nerve terminals in mouse ileum suggests that the toxin may be a specific marker for cholinergic nerves in the periphery. Based on these localization studies and published pharmacological observations, it is concluded that efficient toxin-induced blockade of neurotransmission depends on the presence of specific acceptors of high affinity for the toxin and of an effective neuronal uptake mechanism. Inhibition of the release of numerous transmitters from different kinds of nerve terminals lacking one of these features can be produced by high toxin concentrations when uptake occurs via low affinity acceptors or by non-specific means. Notably, this widespread action of the toxin indicates the occurrence of a common intracellular target in several, possibly all, nerve types.",
author = "Black, {Jennifer D} and Dolly, {J. O.}",
year = "1987",
month = "1",
day = "1",
doi = "10.1016/0306-4522(87)90094-7",
language = "English (US)",
volume = "23",
pages = "767--779",
journal = "Neuroscience",
issn = "0306-4522",
publisher = "Elsevier Limited",
number = "2",

}

TY - JOUR

T1 - Selective location of acceptors for botulinum neurotoxin a in the central and peripheral nervous systems

AU - Black, Jennifer D

AU - Dolly, J. O.

PY - 1987/1/1

Y1 - 1987/1/1

N2 - The main site of action for botulinum neurotoxin is cholinergic motor nerve terminals where specific acceptors concentrate the toxin on the cell surface, thereby facilitating its internalization and inactivation of a component essential for transmitter release. In this study, the interaction in vitro of [125I]botulinum neurotoxin type A with central and peripheral nerve terminals of different types was investigated using Ultrofilm and electron-microscope autoradiography. It was found that: (i) The neurotoxin binds to synapse-rich areas of rat brain, particularly in the hippocampus and cerebellum; identity of the neuron types labelled is unclear although cholinergic nerves seem to be labelled, perhaps not exclusively, in many areas, (ii) Toxin uptake at central nerve terminals appears to be minimal and its penetration into intact brain slices is restricted; this may account for the toxin's lower central toxicity. (iii) Selective labelling of cholinergic nerves but not purinergic, peptidergic or adrenergic nerve terminals in mouse ileum suggests that the toxin may be a specific marker for cholinergic nerves in the periphery. Based on these localization studies and published pharmacological observations, it is concluded that efficient toxin-induced blockade of neurotransmission depends on the presence of specific acceptors of high affinity for the toxin and of an effective neuronal uptake mechanism. Inhibition of the release of numerous transmitters from different kinds of nerve terminals lacking one of these features can be produced by high toxin concentrations when uptake occurs via low affinity acceptors or by non-specific means. Notably, this widespread action of the toxin indicates the occurrence of a common intracellular target in several, possibly all, nerve types.

AB - The main site of action for botulinum neurotoxin is cholinergic motor nerve terminals where specific acceptors concentrate the toxin on the cell surface, thereby facilitating its internalization and inactivation of a component essential for transmitter release. In this study, the interaction in vitro of [125I]botulinum neurotoxin type A with central and peripheral nerve terminals of different types was investigated using Ultrofilm and electron-microscope autoradiography. It was found that: (i) The neurotoxin binds to synapse-rich areas of rat brain, particularly in the hippocampus and cerebellum; identity of the neuron types labelled is unclear although cholinergic nerves seem to be labelled, perhaps not exclusively, in many areas, (ii) Toxin uptake at central nerve terminals appears to be minimal and its penetration into intact brain slices is restricted; this may account for the toxin's lower central toxicity. (iii) Selective labelling of cholinergic nerves but not purinergic, peptidergic or adrenergic nerve terminals in mouse ileum suggests that the toxin may be a specific marker for cholinergic nerves in the periphery. Based on these localization studies and published pharmacological observations, it is concluded that efficient toxin-induced blockade of neurotransmission depends on the presence of specific acceptors of high affinity for the toxin and of an effective neuronal uptake mechanism. Inhibition of the release of numerous transmitters from different kinds of nerve terminals lacking one of these features can be produced by high toxin concentrations when uptake occurs via low affinity acceptors or by non-specific means. Notably, this widespread action of the toxin indicates the occurrence of a common intracellular target in several, possibly all, nerve types.

UR - http://www.scopus.com/inward/record.url?scp=0023500772&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0023500772&partnerID=8YFLogxK

U2 - 10.1016/0306-4522(87)90094-7

DO - 10.1016/0306-4522(87)90094-7

M3 - Article

VL - 23

SP - 767

EP - 779

JO - Neuroscience

JF - Neuroscience

SN - 0306-4522

IS - 2

ER -