Reprogramming human T cell function and specificity with non-viral genome targeting

Theodore L. Roth, Cristina Puig-Saus, Ruby Yu, Eric Shifrut, Julia Carnevale, P. Jonathan Li, Joseph Hiatt, Justin Saco, Paige Krystofinski, Han Li, Victoria Tobin, David N. Nguyen, Michael R. Lee, Amy L. Putnam, Andrea L. Ferris, Jeff W. Chen, Jean Nicolas Schickel, Laurence Pellerin, David Carmody, Gorka Alkorta-Aranburu & 25 others Daniela Del Gaudio, Hiroyuki Matsumoto, Montse Morell, Ying Mao, Min Cho, Rolen M. Quadros, Channabasavaiah B Gurumurthy, Baz Smith, Michael Haugwitz, Stephen H. Hughes, Jonathan S. Weissman, Kathrin Schumann, Jonathan H. Esensten, Andrew P. May, Alan Ashworth, Gary M. Kupfer, Siri Atma W. Greeley, Rosa Bacchetta, Eric Meffre, Maria Grazia Roncarolo, Neil Romberg, Kevan C. Herold, Antoni Ribas, Manuel D. Leonetti, Alexander Marson

Research output: Contribution to journalArticle

66 Citations (Scopus)

Abstract

Decades of work have aimed to genetically reprogram T cells for therapeutic purposes 1,2 using recombinant viral vectors, which do not target transgenes to specific genomic sites 3,4 . The need for viral vectors has slowed down research and clinical use as their manufacturing and testing is lengthy and expensive. Genome editing brought the promise of specific and efficient insertion of large transgenes into target cells using homology-directed repair 5,6 . Here we developed a CRISPR-Cas9 genome-targeting system that does not require viral vectors, allowing rapid and efficient insertion of large DNA sequences (greater than one kilobase) at specific sites in the genomes of primary human T cells, while preserving cell viability and function. This permits individual or multiplexed modification of endogenous genes. First, we applied this strategy to correct a pathogenic IL2RA mutation in cells from patients with monogenic autoimmune disease, and demonstrate improved signalling function. Second, we replaced the endogenous T cell receptor (TCR) locus with a new TCR that redirected T cells to a cancer antigen. The resulting TCR-engineered T cells specifically recognized tumour antigens and mounted productive anti-tumour cell responses in vitro and in vivo. Together, these studies provide preclinical evidence that non-viral genome targeting can enable rapid and flexible experimental manipulation and therapeutic engineering of primary human immune cells.

Original languageEnglish (US)
Pages (from-to)405-409
Number of pages5
JournalNature
Volume559
Issue number7714
DOIs
StatePublished - Jul 19 2018

Fingerprint

T-Cell Antigen Receptor Specificity
T-Cell Antigen Receptor
Genome
T-Lymphocytes
Transgenes
Clustered Regularly Interspaced Short Palindromic Repeats
Human Engineering
Neoplasm Antigens
Human Genome
Autoimmune Diseases
Neoplasms
Cell Survival
Antigens
Mutation
Therapeutics
Research
Genes

ASJC Scopus subject areas

  • General

Cite this

Roth, T. L., Puig-Saus, C., Yu, R., Shifrut, E., Carnevale, J., Li, P. J., ... Marson, A. (2018). Reprogramming human T cell function and specificity with non-viral genome targeting. Nature, 559(7714), 405-409. https://doi.org/10.1038/s41586-018-0326-5

Reprogramming human T cell function and specificity with non-viral genome targeting. / Roth, Theodore L.; Puig-Saus, Cristina; Yu, Ruby; Shifrut, Eric; Carnevale, Julia; Li, P. Jonathan; Hiatt, Joseph; Saco, Justin; Krystofinski, Paige; Li, Han; Tobin, Victoria; Nguyen, David N.; Lee, Michael R.; Putnam, Amy L.; Ferris, Andrea L.; Chen, Jeff W.; Schickel, Jean Nicolas; Pellerin, Laurence; Carmody, David; Alkorta-Aranburu, Gorka; Del Gaudio, Daniela; Matsumoto, Hiroyuki; Morell, Montse; Mao, Ying; Cho, Min; Quadros, Rolen M.; Gurumurthy, Channabasavaiah B; Smith, Baz; Haugwitz, Michael; Hughes, Stephen H.; Weissman, Jonathan S.; Schumann, Kathrin; Esensten, Jonathan H.; May, Andrew P.; Ashworth, Alan; Kupfer, Gary M.; Greeley, Siri Atma W.; Bacchetta, Rosa; Meffre, Eric; Roncarolo, Maria Grazia; Romberg, Neil; Herold, Kevan C.; Ribas, Antoni; Leonetti, Manuel D.; Marson, Alexander.

In: Nature, Vol. 559, No. 7714, 19.07.2018, p. 405-409.

Research output: Contribution to journalArticle

Roth, TL, Puig-Saus, C, Yu, R, Shifrut, E, Carnevale, J, Li, PJ, Hiatt, J, Saco, J, Krystofinski, P, Li, H, Tobin, V, Nguyen, DN, Lee, MR, Putnam, AL, Ferris, AL, Chen, JW, Schickel, JN, Pellerin, L, Carmody, D, Alkorta-Aranburu, G, Del Gaudio, D, Matsumoto, H, Morell, M, Mao, Y, Cho, M, Quadros, RM, Gurumurthy, CB, Smith, B, Haugwitz, M, Hughes, SH, Weissman, JS, Schumann, K, Esensten, JH, May, AP, Ashworth, A, Kupfer, GM, Greeley, SAW, Bacchetta, R, Meffre, E, Roncarolo, MG, Romberg, N, Herold, KC, Ribas, A, Leonetti, MD & Marson, A 2018, 'Reprogramming human T cell function and specificity with non-viral genome targeting', Nature, vol. 559, no. 7714, pp. 405-409. https://doi.org/10.1038/s41586-018-0326-5
Roth TL, Puig-Saus C, Yu R, Shifrut E, Carnevale J, Li PJ et al. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature. 2018 Jul 19;559(7714):405-409. https://doi.org/10.1038/s41586-018-0326-5
Roth, Theodore L. ; Puig-Saus, Cristina ; Yu, Ruby ; Shifrut, Eric ; Carnevale, Julia ; Li, P. Jonathan ; Hiatt, Joseph ; Saco, Justin ; Krystofinski, Paige ; Li, Han ; Tobin, Victoria ; Nguyen, David N. ; Lee, Michael R. ; Putnam, Amy L. ; Ferris, Andrea L. ; Chen, Jeff W. ; Schickel, Jean Nicolas ; Pellerin, Laurence ; Carmody, David ; Alkorta-Aranburu, Gorka ; Del Gaudio, Daniela ; Matsumoto, Hiroyuki ; Morell, Montse ; Mao, Ying ; Cho, Min ; Quadros, Rolen M. ; Gurumurthy, Channabasavaiah B ; Smith, Baz ; Haugwitz, Michael ; Hughes, Stephen H. ; Weissman, Jonathan S. ; Schumann, Kathrin ; Esensten, Jonathan H. ; May, Andrew P. ; Ashworth, Alan ; Kupfer, Gary M. ; Greeley, Siri Atma W. ; Bacchetta, Rosa ; Meffre, Eric ; Roncarolo, Maria Grazia ; Romberg, Neil ; Herold, Kevan C. ; Ribas, Antoni ; Leonetti, Manuel D. ; Marson, Alexander. / Reprogramming human T cell function and specificity with non-viral genome targeting. In: Nature. 2018 ; Vol. 559, No. 7714. pp. 405-409.
@article{09cdb962bcb042ab81e1a46460de55cc,
title = "Reprogramming human T cell function and specificity with non-viral genome targeting",
abstract = "Decades of work have aimed to genetically reprogram T cells for therapeutic purposes 1,2 using recombinant viral vectors, which do not target transgenes to specific genomic sites 3,4 . The need for viral vectors has slowed down research and clinical use as their manufacturing and testing is lengthy and expensive. Genome editing brought the promise of specific and efficient insertion of large transgenes into target cells using homology-directed repair 5,6 . Here we developed a CRISPR-Cas9 genome-targeting system that does not require viral vectors, allowing rapid and efficient insertion of large DNA sequences (greater than one kilobase) at specific sites in the genomes of primary human T cells, while preserving cell viability and function. This permits individual or multiplexed modification of endogenous genes. First, we applied this strategy to correct a pathogenic IL2RA mutation in cells from patients with monogenic autoimmune disease, and demonstrate improved signalling function. Second, we replaced the endogenous T cell receptor (TCR) locus with a new TCR that redirected T cells to a cancer antigen. The resulting TCR-engineered T cells specifically recognized tumour antigens and mounted productive anti-tumour cell responses in vitro and in vivo. Together, these studies provide preclinical evidence that non-viral genome targeting can enable rapid and flexible experimental manipulation and therapeutic engineering of primary human immune cells.",
author = "Roth, {Theodore L.} and Cristina Puig-Saus and Ruby Yu and Eric Shifrut and Julia Carnevale and Li, {P. Jonathan} and Joseph Hiatt and Justin Saco and Paige Krystofinski and Han Li and Victoria Tobin and Nguyen, {David N.} and Lee, {Michael R.} and Putnam, {Amy L.} and Ferris, {Andrea L.} and Chen, {Jeff W.} and Schickel, {Jean Nicolas} and Laurence Pellerin and David Carmody and Gorka Alkorta-Aranburu and {Del Gaudio}, Daniela and Hiroyuki Matsumoto and Montse Morell and Ying Mao and Min Cho and Quadros, {Rolen M.} and Gurumurthy, {Channabasavaiah B} and Baz Smith and Michael Haugwitz and Hughes, {Stephen H.} and Weissman, {Jonathan S.} and Kathrin Schumann and Esensten, {Jonathan H.} and May, {Andrew P.} and Alan Ashworth and Kupfer, {Gary M.} and Greeley, {Siri Atma W.} and Rosa Bacchetta and Eric Meffre and Roncarolo, {Maria Grazia} and Neil Romberg and Herold, {Kevan C.} and Antoni Ribas and Leonetti, {Manuel D.} and Alexander Marson",
year = "2018",
month = "7",
day = "19",
doi = "10.1038/s41586-018-0326-5",
language = "English (US)",
volume = "559",
pages = "405--409",
journal = "Nature",
issn = "0028-0836",
publisher = "Nature Publishing Group",
number = "7714",

}

TY - JOUR

T1 - Reprogramming human T cell function and specificity with non-viral genome targeting

AU - Roth, Theodore L.

AU - Puig-Saus, Cristina

AU - Yu, Ruby

AU - Shifrut, Eric

AU - Carnevale, Julia

AU - Li, P. Jonathan

AU - Hiatt, Joseph

AU - Saco, Justin

AU - Krystofinski, Paige

AU - Li, Han

AU - Tobin, Victoria

AU - Nguyen, David N.

AU - Lee, Michael R.

AU - Putnam, Amy L.

AU - Ferris, Andrea L.

AU - Chen, Jeff W.

AU - Schickel, Jean Nicolas

AU - Pellerin, Laurence

AU - Carmody, David

AU - Alkorta-Aranburu, Gorka

AU - Del Gaudio, Daniela

AU - Matsumoto, Hiroyuki

AU - Morell, Montse

AU - Mao, Ying

AU - Cho, Min

AU - Quadros, Rolen M.

AU - Gurumurthy, Channabasavaiah B

AU - Smith, Baz

AU - Haugwitz, Michael

AU - Hughes, Stephen H.

AU - Weissman, Jonathan S.

AU - Schumann, Kathrin

AU - Esensten, Jonathan H.

AU - May, Andrew P.

AU - Ashworth, Alan

AU - Kupfer, Gary M.

AU - Greeley, Siri Atma W.

AU - Bacchetta, Rosa

AU - Meffre, Eric

AU - Roncarolo, Maria Grazia

AU - Romberg, Neil

AU - Herold, Kevan C.

AU - Ribas, Antoni

AU - Leonetti, Manuel D.

AU - Marson, Alexander

PY - 2018/7/19

Y1 - 2018/7/19

N2 - Decades of work have aimed to genetically reprogram T cells for therapeutic purposes 1,2 using recombinant viral vectors, which do not target transgenes to specific genomic sites 3,4 . The need for viral vectors has slowed down research and clinical use as their manufacturing and testing is lengthy and expensive. Genome editing brought the promise of specific and efficient insertion of large transgenes into target cells using homology-directed repair 5,6 . Here we developed a CRISPR-Cas9 genome-targeting system that does not require viral vectors, allowing rapid and efficient insertion of large DNA sequences (greater than one kilobase) at specific sites in the genomes of primary human T cells, while preserving cell viability and function. This permits individual or multiplexed modification of endogenous genes. First, we applied this strategy to correct a pathogenic IL2RA mutation in cells from patients with monogenic autoimmune disease, and demonstrate improved signalling function. Second, we replaced the endogenous T cell receptor (TCR) locus with a new TCR that redirected T cells to a cancer antigen. The resulting TCR-engineered T cells specifically recognized tumour antigens and mounted productive anti-tumour cell responses in vitro and in vivo. Together, these studies provide preclinical evidence that non-viral genome targeting can enable rapid and flexible experimental manipulation and therapeutic engineering of primary human immune cells.

AB - Decades of work have aimed to genetically reprogram T cells for therapeutic purposes 1,2 using recombinant viral vectors, which do not target transgenes to specific genomic sites 3,4 . The need for viral vectors has slowed down research and clinical use as their manufacturing and testing is lengthy and expensive. Genome editing brought the promise of specific and efficient insertion of large transgenes into target cells using homology-directed repair 5,6 . Here we developed a CRISPR-Cas9 genome-targeting system that does not require viral vectors, allowing rapid and efficient insertion of large DNA sequences (greater than one kilobase) at specific sites in the genomes of primary human T cells, while preserving cell viability and function. This permits individual or multiplexed modification of endogenous genes. First, we applied this strategy to correct a pathogenic IL2RA mutation in cells from patients with monogenic autoimmune disease, and demonstrate improved signalling function. Second, we replaced the endogenous T cell receptor (TCR) locus with a new TCR that redirected T cells to a cancer antigen. The resulting TCR-engineered T cells specifically recognized tumour antigens and mounted productive anti-tumour cell responses in vitro and in vivo. Together, these studies provide preclinical evidence that non-viral genome targeting can enable rapid and flexible experimental manipulation and therapeutic engineering of primary human immune cells.

UR - http://www.scopus.com/inward/record.url?scp=85050234806&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85050234806&partnerID=8YFLogxK

U2 - 10.1038/s41586-018-0326-5

DO - 10.1038/s41586-018-0326-5

M3 - Article

VL - 559

SP - 405

EP - 409

JO - Nature

JF - Nature

SN - 0028-0836

IS - 7714

ER -