Regulation of the promoter activity of interferon regulatory factor-7 gene. Activation by interferon and silencing by hypermethylation

Runqing Lu, Wei Chun Au, Wen Shuz Yeow, Nathan Hageman, Paula M. Pitha

Research output: Contribution to journalArticle

129 Scopus citations

Abstract

The molecular mechanism by which virus induces expression of the early inflammatory genes has not yet been completely elucidated. Previous studies indicated that the virus-mediated transcription of type I interferon (IFN) genes required activation of two members of IFN regulatory factor (IRF) family, IRF-3 and IRF-7, where the expression of IRF-7 was found to be indispensable for the induction of IFNA genes. To determine the factors that regulate expression of IRF-7 gene, as well as its inducibility by type I IFNs, we have isolated and characterized the promoter and first intron of the human IRF-7 gene. This region shows a presence of two potential interferon-sensitive response elements (ISRE/IRF-E). However, only the ISRE present in the first intron was functional and conferred interferon inducibility in a transient transfection assay. Using a pull-down assay with an oligodeoxynucleotide corresponding to this ISRE immobilized to magnetic beads, we have demonstrated that this ISRE binds ISGF3 complex and IRF-1 from the extract of IFN-treated cells but not from the untreated cells. We have further shown that the previously observed lack of expression of IRF-7 in 2fTGH fibrosarcoma cell line, correlated with hypermethylation of the CpG island in the human IRF-7 promoter. The repression of the promoter activity was relieved by treatment with DNA methyltransferase inhibitor 5-azadeoxycytidine. In vitro methylation of IRF-7 promoter silenced IRF-7 directed expression of luciferase gene in HeLa cells that express endogenous IRF-7 gene. Whether silencing of IRF-7 by methylation is instrumental for the process of tumorigenesis remains to be determined.

Original languageEnglish (US)
Pages (from-to)31805-31812
Number of pages8
JournalJournal of Biological Chemistry
Volume275
Issue number41
DOIs
Publication statusPublished - Oct 13 2000

    Fingerprint

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Cite this