Reduced Intracellular Drug Accumulation in the Absence of P-Glycoprotein (mdr1) Overexpression in Mitoxantrone-resistant Human MCF-7 Breast Cancer Cells

Masayuki Nakagawa, Erasmus Schneider, Katharine H. Dixon, Julie Horton, Kristin Kelley, Charles Morrow, Kenneth H. Cowan

Research output: Contribution to journalArticle

127 Citations (Scopus)

Abstract

A mitoxantrone-resistant human MCF-7 breast cancer subline (MCF/MX) which is approximately 4000-fold resistant to mitoxantrone was isolated by serial passage of the parental wild-type MCF-7 cells (MCF/WT) in stepwise increasing concentrations of drug. MCF/MX cells were also approximately 10-fold cross-resistant to doxorubicin and etoposide but were not cross-resistant to vinblastine. Intracellular accumulation of radiolabeled mitoxantrone was markedly reduced in MCF/MX cells relative to that in the drug-sensitive MCF/WT cells. This decrease in intracellular drug accumulation into MCF/MX cells was associated with enhanced drug efflux, which was reversed when cells were incubated in the presence of sodium azide and 2, 4-dinitrophenol, suggesting an energy-dependent process. Incubation of MCF/MX cells with verapamil did not affect either the accumulation of mitoxantrone or the level of resistance in these cells. Furthermore, RNase protection and Western blot analyses failed to detect the expression of the mdr1 RNA or P-glycoprotein, a drug efflux pump known to be associated with the development of multidrug resistance in vitro. However, a polyclonal antibody directed against a synthetic peptide corresponding to the putative ATP binding domain of P-glycoprotein reacted with two (Afr 42,000 and 85,000) membrane proteins from MCF/MX cells which were not found in MCF/WT. Functional assays and Western blot analysis for topoisomerase II revealed no differences in topoisomerase II activity or protein levels in MCF/MX cells. Thus, resistance in this cell line is apparently associated with enhanced drug efflux involving a pathway distinct from the mdr1-encoded multidrug transporter P-glycoprotein.

Original languageEnglish (US)
Pages (from-to)6175-6181
Number of pages7
JournalCancer Research
Volume52
Issue number22
StatePublished - Nov 1992

Fingerprint

Mitoxantrone
P-Glycoprotein
Breast Neoplasms
Pharmaceutical Preparations
Type II DNA Topoisomerase
Western Blotting
Serial Passage
2,4-Dinitrophenol
Sodium Azide
Vinblastine
MCF-7 Cells
Multiple Drug Resistance
Etoposide
Ribonucleases
Verapamil
Doxorubicin
Membrane Proteins
Adenosine Triphosphate
RNA
Cell Line

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Cite this

Reduced Intracellular Drug Accumulation in the Absence of P-Glycoprotein (mdr1) Overexpression in Mitoxantrone-resistant Human MCF-7 Breast Cancer Cells. / Nakagawa, Masayuki; Schneider, Erasmus; Dixon, Katharine H.; Horton, Julie; Kelley, Kristin; Morrow, Charles; Cowan, Kenneth H.

In: Cancer Research, Vol. 52, No. 22, 11.1992, p. 6175-6181.

Research output: Contribution to journalArticle

Nakagawa, Masayuki ; Schneider, Erasmus ; Dixon, Katharine H. ; Horton, Julie ; Kelley, Kristin ; Morrow, Charles ; Cowan, Kenneth H. / Reduced Intracellular Drug Accumulation in the Absence of P-Glycoprotein (mdr1) Overexpression in Mitoxantrone-resistant Human MCF-7 Breast Cancer Cells. In: Cancer Research. 1992 ; Vol. 52, No. 22. pp. 6175-6181.
@article{267aaec6718345b091eda3d0ed55744a,
title = "Reduced Intracellular Drug Accumulation in the Absence of P-Glycoprotein (mdr1) Overexpression in Mitoxantrone-resistant Human MCF-7 Breast Cancer Cells",
abstract = "A mitoxantrone-resistant human MCF-7 breast cancer subline (MCF/MX) which is approximately 4000-fold resistant to mitoxantrone was isolated by serial passage of the parental wild-type MCF-7 cells (MCF/WT) in stepwise increasing concentrations of drug. MCF/MX cells were also approximately 10-fold cross-resistant to doxorubicin and etoposide but were not cross-resistant to vinblastine. Intracellular accumulation of radiolabeled mitoxantrone was markedly reduced in MCF/MX cells relative to that in the drug-sensitive MCF/WT cells. This decrease in intracellular drug accumulation into MCF/MX cells was associated with enhanced drug efflux, which was reversed when cells were incubated in the presence of sodium azide and 2, 4-dinitrophenol, suggesting an energy-dependent process. Incubation of MCF/MX cells with verapamil did not affect either the accumulation of mitoxantrone or the level of resistance in these cells. Furthermore, RNase protection and Western blot analyses failed to detect the expression of the mdr1 RNA or P-glycoprotein, a drug efflux pump known to be associated with the development of multidrug resistance in vitro. However, a polyclonal antibody directed against a synthetic peptide corresponding to the putative ATP binding domain of P-glycoprotein reacted with two (Afr 42,000 and 85,000) membrane proteins from MCF/MX cells which were not found in MCF/WT. Functional assays and Western blot analysis for topoisomerase II revealed no differences in topoisomerase II activity or protein levels in MCF/MX cells. Thus, resistance in this cell line is apparently associated with enhanced drug efflux involving a pathway distinct from the mdr1-encoded multidrug transporter P-glycoprotein.",
author = "Masayuki Nakagawa and Erasmus Schneider and Dixon, {Katharine H.} and Julie Horton and Kristin Kelley and Charles Morrow and Cowan, {Kenneth H.}",
year = "1992",
month = "11",
language = "English (US)",
volume = "52",
pages = "6175--6181",
journal = "Cancer Research",
issn = "0008-5472",
publisher = "American Association for Cancer Research Inc.",
number = "22",

}

TY - JOUR

T1 - Reduced Intracellular Drug Accumulation in the Absence of P-Glycoprotein (mdr1) Overexpression in Mitoxantrone-resistant Human MCF-7 Breast Cancer Cells

AU - Nakagawa, Masayuki

AU - Schneider, Erasmus

AU - Dixon, Katharine H.

AU - Horton, Julie

AU - Kelley, Kristin

AU - Morrow, Charles

AU - Cowan, Kenneth H.

PY - 1992/11

Y1 - 1992/11

N2 - A mitoxantrone-resistant human MCF-7 breast cancer subline (MCF/MX) which is approximately 4000-fold resistant to mitoxantrone was isolated by serial passage of the parental wild-type MCF-7 cells (MCF/WT) in stepwise increasing concentrations of drug. MCF/MX cells were also approximately 10-fold cross-resistant to doxorubicin and etoposide but were not cross-resistant to vinblastine. Intracellular accumulation of radiolabeled mitoxantrone was markedly reduced in MCF/MX cells relative to that in the drug-sensitive MCF/WT cells. This decrease in intracellular drug accumulation into MCF/MX cells was associated with enhanced drug efflux, which was reversed when cells were incubated in the presence of sodium azide and 2, 4-dinitrophenol, suggesting an energy-dependent process. Incubation of MCF/MX cells with verapamil did not affect either the accumulation of mitoxantrone or the level of resistance in these cells. Furthermore, RNase protection and Western blot analyses failed to detect the expression of the mdr1 RNA or P-glycoprotein, a drug efflux pump known to be associated with the development of multidrug resistance in vitro. However, a polyclonal antibody directed against a synthetic peptide corresponding to the putative ATP binding domain of P-glycoprotein reacted with two (Afr 42,000 and 85,000) membrane proteins from MCF/MX cells which were not found in MCF/WT. Functional assays and Western blot analysis for topoisomerase II revealed no differences in topoisomerase II activity or protein levels in MCF/MX cells. Thus, resistance in this cell line is apparently associated with enhanced drug efflux involving a pathway distinct from the mdr1-encoded multidrug transporter P-glycoprotein.

AB - A mitoxantrone-resistant human MCF-7 breast cancer subline (MCF/MX) which is approximately 4000-fold resistant to mitoxantrone was isolated by serial passage of the parental wild-type MCF-7 cells (MCF/WT) in stepwise increasing concentrations of drug. MCF/MX cells were also approximately 10-fold cross-resistant to doxorubicin and etoposide but were not cross-resistant to vinblastine. Intracellular accumulation of radiolabeled mitoxantrone was markedly reduced in MCF/MX cells relative to that in the drug-sensitive MCF/WT cells. This decrease in intracellular drug accumulation into MCF/MX cells was associated with enhanced drug efflux, which was reversed when cells were incubated in the presence of sodium azide and 2, 4-dinitrophenol, suggesting an energy-dependent process. Incubation of MCF/MX cells with verapamil did not affect either the accumulation of mitoxantrone or the level of resistance in these cells. Furthermore, RNase protection and Western blot analyses failed to detect the expression of the mdr1 RNA or P-glycoprotein, a drug efflux pump known to be associated with the development of multidrug resistance in vitro. However, a polyclonal antibody directed against a synthetic peptide corresponding to the putative ATP binding domain of P-glycoprotein reacted with two (Afr 42,000 and 85,000) membrane proteins from MCF/MX cells which were not found in MCF/WT. Functional assays and Western blot analysis for topoisomerase II revealed no differences in topoisomerase II activity or protein levels in MCF/MX cells. Thus, resistance in this cell line is apparently associated with enhanced drug efflux involving a pathway distinct from the mdr1-encoded multidrug transporter P-glycoprotein.

UR - http://www.scopus.com/inward/record.url?scp=0026496549&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0026496549&partnerID=8YFLogxK

M3 - Article

C2 - 1358431

AN - SCOPUS:0026496549

VL - 52

SP - 6175

EP - 6181

JO - Cancer Research

JF - Cancer Research

SN - 0008-5472

IS - 22

ER -