Quantifying vehicle control from physiology in type 1 diabetes

Pranamesh Chakraborty, Jennifer Merickel, Viraj Shah, Anuj Sharma, Chinmay Hegde, Cyrus Desouza, Andjela Drincic, Pujitha Gunaratne, Matthew Rizzo

Research output: Contribution to journalArticle

Abstract

Objective: Our goal is to measure real-world effects of at-risk driver physiology on safety-critical tasks like driving by monitoring driver behavior and physiology in real-time. Drivers with type 1 diabetes (T1D) have an elevated crash risk that is linked to abnormal blood glucose, particularly hypoglycemia. We tested the hypotheses that (1) T1D drivers would have overall impaired vehicle control behavior relative to control drivers without diabetes, (2) At-risk patterns of vehicle control in T1D drivers would be linked to at-risk, in-vehicle physiology, and (3) T1D drivers would show impaired vehicle control with more recent hypoglycemia prior to driving. Methods: Drivers (18 T1D, 14 control) were monitored continuously (4 weeks) using in-vehicle sensors (e.g., video, accelerometer, speed) and wearable continuous glucose monitors (CGMs) that measured each T1D driver’s real-time blood glucose. Driver vehicle control was measured by vehicle acceleration variability (AV) across lateral (AVY, steering) and longitudinal (AVX, braking/accelerating) axes in 45-second segments (N = 61,635). Average vehicle speed for each segment was modeled as a covariate of AV and mixed-effects linear regression models were used. Results: We analyzed 3,687 drives (21,231 miles). T1D drivers had significantly higher overall AVX, Y compared to control drivers (BX = 2.5 × 10−2 BY = 1.6 × 10−2, p < 0.01)—which is linked to erratic steering or swerving and harsh braking/accelerating. At-risk vehicle control patterns were particularly associated with at-risk physiology, namely hypo- and hyperglycemia (higher overall AVX,Y). Impairments from hypoglycemia persisted for hours after hypoglycemia resolved, with drivers who had hypoglycemia within 2–3 h of driving showing higher AVX and AVY. State Department of Motor Vehicle records for the 3 years preceding the study showed that at-risk T1D drivers accounted for all crashes (N = 3) and 85% of citations (N = 13) observed. Conclusions: Our results show that T1D driver risk can be linked to real-time patterns of at-risk driver physiology, particularly hypoglycemia, and driver risk can be detected during and prior to driving. Such naturalistic studies monitoring driver vehicle controls can inform methods for early detection of hypoglycemia-related driving risks, fitness to drive assessments, thereby helping to preserve safety in at-risk drivers with diabetes.

Original languageEnglish (US)
JournalTraffic Injury Prevention
DOIs
StateAccepted/In press - Jan 1 2019

Fingerprint

Physiology
physiology
Medical problems
Type 1 Diabetes Mellitus
chronic illness
driver
Hypoglycemia
Glucose
Braking
Blood Glucose
Linear Models
Blood
Safety
Behavior Control
Monitoring
Motor Vehicles
Accelerometers
Linear regression
Hyperglycemia
Type 2 Diabetes Mellitus

Keywords

  • Diabetes mellitus
  • driving risk
  • hypoglycemia
  • vehicle control

ASJC Scopus subject areas

  • Safety Research
  • Public Health, Environmental and Occupational Health

Cite this

Quantifying vehicle control from physiology in type 1 diabetes. / Chakraborty, Pranamesh; Merickel, Jennifer; Shah, Viraj; Sharma, Anuj; Hegde, Chinmay; Desouza, Cyrus; Drincic, Andjela; Gunaratne, Pujitha; Rizzo, Matthew.

In: Traffic Injury Prevention, 01.01.2019.

Research output: Contribution to journalArticle

@article{62cdfcb21c3b4fa2a76a2a8aaadc8a9e,
title = "Quantifying vehicle control from physiology in type 1 diabetes",
abstract = "Objective: Our goal is to measure real-world effects of at-risk driver physiology on safety-critical tasks like driving by monitoring driver behavior and physiology in real-time. Drivers with type 1 diabetes (T1D) have an elevated crash risk that is linked to abnormal blood glucose, particularly hypoglycemia. We tested the hypotheses that (1) T1D drivers would have overall impaired vehicle control behavior relative to control drivers without diabetes, (2) At-risk patterns of vehicle control in T1D drivers would be linked to at-risk, in-vehicle physiology, and (3) T1D drivers would show impaired vehicle control with more recent hypoglycemia prior to driving. Methods: Drivers (18 T1D, 14 control) were monitored continuously (4 weeks) using in-vehicle sensors (e.g., video, accelerometer, speed) and wearable continuous glucose monitors (CGMs) that measured each T1D driver’s real-time blood glucose. Driver vehicle control was measured by vehicle acceleration variability (AV) across lateral (AVY, steering) and longitudinal (AVX, braking/accelerating) axes in 45-second segments (N = 61,635). Average vehicle speed for each segment was modeled as a covariate of AV and mixed-effects linear regression models were used. Results: We analyzed 3,687 drives (21,231 miles). T1D drivers had significantly higher overall AVX, Y compared to control drivers (BX = 2.5 × 10−2 BY = 1.6 × 10−2, p < 0.01)—which is linked to erratic steering or swerving and harsh braking/accelerating. At-risk vehicle control patterns were particularly associated with at-risk physiology, namely hypo- and hyperglycemia (higher overall AVX,Y). Impairments from hypoglycemia persisted for hours after hypoglycemia resolved, with drivers who had hypoglycemia within 2–3 h of driving showing higher AVX and AVY. State Department of Motor Vehicle records for the 3 years preceding the study showed that at-risk T1D drivers accounted for all crashes (N = 3) and 85{\%} of citations (N = 13) observed. Conclusions: Our results show that T1D driver risk can be linked to real-time patterns of at-risk driver physiology, particularly hypoglycemia, and driver risk can be detected during and prior to driving. Such naturalistic studies monitoring driver vehicle controls can inform methods for early detection of hypoglycemia-related driving risks, fitness to drive assessments, thereby helping to preserve safety in at-risk drivers with diabetes.",
keywords = "Diabetes mellitus, driving risk, hypoglycemia, vehicle control",
author = "Pranamesh Chakraborty and Jennifer Merickel and Viraj Shah and Anuj Sharma and Chinmay Hegde and Cyrus Desouza and Andjela Drincic and Pujitha Gunaratne and Matthew Rizzo",
year = "2019",
month = "1",
day = "1",
doi = "10.1080/15389588.2019.1665176",
language = "English (US)",
journal = "Traffic Injury Prevention",
issn = "1538-9588",
publisher = "Taylor and Francis Ltd.",

}

TY - JOUR

T1 - Quantifying vehicle control from physiology in type 1 diabetes

AU - Chakraborty, Pranamesh

AU - Merickel, Jennifer

AU - Shah, Viraj

AU - Sharma, Anuj

AU - Hegde, Chinmay

AU - Desouza, Cyrus

AU - Drincic, Andjela

AU - Gunaratne, Pujitha

AU - Rizzo, Matthew

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Objective: Our goal is to measure real-world effects of at-risk driver physiology on safety-critical tasks like driving by monitoring driver behavior and physiology in real-time. Drivers with type 1 diabetes (T1D) have an elevated crash risk that is linked to abnormal blood glucose, particularly hypoglycemia. We tested the hypotheses that (1) T1D drivers would have overall impaired vehicle control behavior relative to control drivers without diabetes, (2) At-risk patterns of vehicle control in T1D drivers would be linked to at-risk, in-vehicle physiology, and (3) T1D drivers would show impaired vehicle control with more recent hypoglycemia prior to driving. Methods: Drivers (18 T1D, 14 control) were monitored continuously (4 weeks) using in-vehicle sensors (e.g., video, accelerometer, speed) and wearable continuous glucose monitors (CGMs) that measured each T1D driver’s real-time blood glucose. Driver vehicle control was measured by vehicle acceleration variability (AV) across lateral (AVY, steering) and longitudinal (AVX, braking/accelerating) axes in 45-second segments (N = 61,635). Average vehicle speed for each segment was modeled as a covariate of AV and mixed-effects linear regression models were used. Results: We analyzed 3,687 drives (21,231 miles). T1D drivers had significantly higher overall AVX, Y compared to control drivers (BX = 2.5 × 10−2 BY = 1.6 × 10−2, p < 0.01)—which is linked to erratic steering or swerving and harsh braking/accelerating. At-risk vehicle control patterns were particularly associated with at-risk physiology, namely hypo- and hyperglycemia (higher overall AVX,Y). Impairments from hypoglycemia persisted for hours after hypoglycemia resolved, with drivers who had hypoglycemia within 2–3 h of driving showing higher AVX and AVY. State Department of Motor Vehicle records for the 3 years preceding the study showed that at-risk T1D drivers accounted for all crashes (N = 3) and 85% of citations (N = 13) observed. Conclusions: Our results show that T1D driver risk can be linked to real-time patterns of at-risk driver physiology, particularly hypoglycemia, and driver risk can be detected during and prior to driving. Such naturalistic studies monitoring driver vehicle controls can inform methods for early detection of hypoglycemia-related driving risks, fitness to drive assessments, thereby helping to preserve safety in at-risk drivers with diabetes.

AB - Objective: Our goal is to measure real-world effects of at-risk driver physiology on safety-critical tasks like driving by monitoring driver behavior and physiology in real-time. Drivers with type 1 diabetes (T1D) have an elevated crash risk that is linked to abnormal blood glucose, particularly hypoglycemia. We tested the hypotheses that (1) T1D drivers would have overall impaired vehicle control behavior relative to control drivers without diabetes, (2) At-risk patterns of vehicle control in T1D drivers would be linked to at-risk, in-vehicle physiology, and (3) T1D drivers would show impaired vehicle control with more recent hypoglycemia prior to driving. Methods: Drivers (18 T1D, 14 control) were monitored continuously (4 weeks) using in-vehicle sensors (e.g., video, accelerometer, speed) and wearable continuous glucose monitors (CGMs) that measured each T1D driver’s real-time blood glucose. Driver vehicle control was measured by vehicle acceleration variability (AV) across lateral (AVY, steering) and longitudinal (AVX, braking/accelerating) axes in 45-second segments (N = 61,635). Average vehicle speed for each segment was modeled as a covariate of AV and mixed-effects linear regression models were used. Results: We analyzed 3,687 drives (21,231 miles). T1D drivers had significantly higher overall AVX, Y compared to control drivers (BX = 2.5 × 10−2 BY = 1.6 × 10−2, p < 0.01)—which is linked to erratic steering or swerving and harsh braking/accelerating. At-risk vehicle control patterns were particularly associated with at-risk physiology, namely hypo- and hyperglycemia (higher overall AVX,Y). Impairments from hypoglycemia persisted for hours after hypoglycemia resolved, with drivers who had hypoglycemia within 2–3 h of driving showing higher AVX and AVY. State Department of Motor Vehicle records for the 3 years preceding the study showed that at-risk T1D drivers accounted for all crashes (N = 3) and 85% of citations (N = 13) observed. Conclusions: Our results show that T1D driver risk can be linked to real-time patterns of at-risk driver physiology, particularly hypoglycemia, and driver risk can be detected during and prior to driving. Such naturalistic studies monitoring driver vehicle controls can inform methods for early detection of hypoglycemia-related driving risks, fitness to drive assessments, thereby helping to preserve safety in at-risk drivers with diabetes.

KW - Diabetes mellitus

KW - driving risk

KW - hypoglycemia

KW - vehicle control

UR - http://www.scopus.com/inward/record.url?scp=85074366506&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85074366506&partnerID=8YFLogxK

U2 - 10.1080/15389588.2019.1665176

DO - 10.1080/15389588.2019.1665176

M3 - Article

C2 - 31617757

AN - SCOPUS:85074366506

JO - Traffic Injury Prevention

JF - Traffic Injury Prevention

SN - 1538-9588

ER -