Pulsed laser deposition of hydrogenated amorphous carbon films from a polymeric target

S. M. Huang, Y. F. Lu, Z. Sun

Research output: Contribution to journalConference article

Abstract

The phenylcarbyne polymer possesses a diamond-like structure. Because of its special structure, this polymer can be converted into diamond-like carbon phases at atmospheric pressure by thermal decomposition. In this article, we report on the growth of hydrogenated amorphous carbon films (a-C:H) films by pulsed laser (KrF excimer, λ = 248 nm) ablation of a phenylcarbyne polymer target under vacuum. a-C:H films were deposited with various laser fluences and at different substrate temperatures. Chemical and structural characteristics of these films were analyzed using X-ray-excited Auger electron spectroscopy (XAES), photoelectron loss spectroscopy (PELS), and Raman spectroscopy. It was found that the fourfold-coordinated component increases with laser fluence at 80 °C or increases with temperature increasing from 25 °C to 60 °C at a fluence of 1×109 W/cm2. When the deposition temperature is increased from 60 °C to 200 °C at a fluence of 1×109 W/cm2, the graphitic component increases. The variation in chemical structures of these films is explained in terms of the changes in the fraction of sp2-bonded clusters and changes in the termination of the graphitic clusters and sp3-bonded networks by hydrogen in the a-C:H films.

Original languageEnglish (US)
Pages (from-to)478-486
Number of pages9
JournalProceedings of SPIE - The International Society for Optical Engineering
Volume3933
StatePublished - Jan 1 2000
EventLaser Applications in Microelectronic and Optoelectronic Manufacturing V - San Jose, CA, USA
Duration: Jan 24 2000Jan 26 2000

Fingerprint

Pulsed Laser Deposition
Carbon films
Amorphous carbon
Amorphous films
Pulsed laser deposition
pulsed laser deposition
Carbon
Target
carbon
fluence
Polymers
Diamond
Diamonds
Strombus or kite or diamond
Spectroscopy
polymers
diamonds
Hydrogen
Excimer
Lasers

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Cite this

Pulsed laser deposition of hydrogenated amorphous carbon films from a polymeric target. / Huang, S. M.; Lu, Y. F.; Sun, Z.

In: Proceedings of SPIE - The International Society for Optical Engineering, Vol. 3933, 01.01.2000, p. 478-486.

Research output: Contribution to journalConference article

@article{976cbfe1eb764827b8ba224b0bdb7f0d,
title = "Pulsed laser deposition of hydrogenated amorphous carbon films from a polymeric target",
abstract = "The phenylcarbyne polymer possesses a diamond-like structure. Because of its special structure, this polymer can be converted into diamond-like carbon phases at atmospheric pressure by thermal decomposition. In this article, we report on the growth of hydrogenated amorphous carbon films (a-C:H) films by pulsed laser (KrF excimer, λ = 248 nm) ablation of a phenylcarbyne polymer target under vacuum. a-C:H films were deposited with various laser fluences and at different substrate temperatures. Chemical and structural characteristics of these films were analyzed using X-ray-excited Auger electron spectroscopy (XAES), photoelectron loss spectroscopy (PELS), and Raman spectroscopy. It was found that the fourfold-coordinated component increases with laser fluence at 80 °C or increases with temperature increasing from 25 °C to 60 °C at a fluence of 1×109 W/cm2. When the deposition temperature is increased from 60 °C to 200 °C at a fluence of 1×109 W/cm2, the graphitic component increases. The variation in chemical structures of these films is explained in terms of the changes in the fraction of sp2-bonded clusters and changes in the termination of the graphitic clusters and sp3-bonded networks by hydrogen in the a-C:H films.",
author = "Huang, {S. M.} and Lu, {Y. F.} and Z. Sun",
year = "2000",
month = "1",
day = "1",
language = "English (US)",
volume = "3933",
pages = "478--486",
journal = "Proceedings of SPIE - The International Society for Optical Engineering",
issn = "0277-786X",
publisher = "SPIE",

}

TY - JOUR

T1 - Pulsed laser deposition of hydrogenated amorphous carbon films from a polymeric target

AU - Huang, S. M.

AU - Lu, Y. F.

AU - Sun, Z.

PY - 2000/1/1

Y1 - 2000/1/1

N2 - The phenylcarbyne polymer possesses a diamond-like structure. Because of its special structure, this polymer can be converted into diamond-like carbon phases at atmospheric pressure by thermal decomposition. In this article, we report on the growth of hydrogenated amorphous carbon films (a-C:H) films by pulsed laser (KrF excimer, λ = 248 nm) ablation of a phenylcarbyne polymer target under vacuum. a-C:H films were deposited with various laser fluences and at different substrate temperatures. Chemical and structural characteristics of these films were analyzed using X-ray-excited Auger electron spectroscopy (XAES), photoelectron loss spectroscopy (PELS), and Raman spectroscopy. It was found that the fourfold-coordinated component increases with laser fluence at 80 °C or increases with temperature increasing from 25 °C to 60 °C at a fluence of 1×109 W/cm2. When the deposition temperature is increased from 60 °C to 200 °C at a fluence of 1×109 W/cm2, the graphitic component increases. The variation in chemical structures of these films is explained in terms of the changes in the fraction of sp2-bonded clusters and changes in the termination of the graphitic clusters and sp3-bonded networks by hydrogen in the a-C:H films.

AB - The phenylcarbyne polymer possesses a diamond-like structure. Because of its special structure, this polymer can be converted into diamond-like carbon phases at atmospheric pressure by thermal decomposition. In this article, we report on the growth of hydrogenated amorphous carbon films (a-C:H) films by pulsed laser (KrF excimer, λ = 248 nm) ablation of a phenylcarbyne polymer target under vacuum. a-C:H films were deposited with various laser fluences and at different substrate temperatures. Chemical and structural characteristics of these films were analyzed using X-ray-excited Auger electron spectroscopy (XAES), photoelectron loss spectroscopy (PELS), and Raman spectroscopy. It was found that the fourfold-coordinated component increases with laser fluence at 80 °C or increases with temperature increasing from 25 °C to 60 °C at a fluence of 1×109 W/cm2. When the deposition temperature is increased from 60 °C to 200 °C at a fluence of 1×109 W/cm2, the graphitic component increases. The variation in chemical structures of these films is explained in terms of the changes in the fraction of sp2-bonded clusters and changes in the termination of the graphitic clusters and sp3-bonded networks by hydrogen in the a-C:H films.

UR - http://www.scopus.com/inward/record.url?scp=0033722269&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033722269&partnerID=8YFLogxK

M3 - Conference article

AN - SCOPUS:0033722269

VL - 3933

SP - 478

EP - 486

JO - Proceedings of SPIE - The International Society for Optical Engineering

JF - Proceedings of SPIE - The International Society for Optical Engineering

SN - 0277-786X

ER -