Protective immunity against Newcastle disease: The role of cell-mediated immunity

D. L. Reynolds, A. D. Maraqa

Research output: Contribution to journalArticle

72 Citations (Scopus)

Abstract

The role of cell-mediated immunity (CMI) in protection of birds from Newcastle disease was investigated by two different strategies in which only Newcastle disease virus (NDV)-specific CMI was conveyed without neutralizing antibodies. In the first strategy, selected 3-wk-old specific-pathogen-free (SPF) birds were vaccinated with either live NDV (LNDV), ultraviolet-inactivated NDV (UVNDV), sodium dodecyl sulfate-treated NDV (SDSNDV), or phosphate-buffered saline (PBS) (negative control) by the subcutaneous route. Birds were booster vaccinated 2 wk later and challenged with the velogenic Texas GB strain of NDV 1 wk after booster. All vaccinated birds had specific CMI responses to NDV as measured by a blastogenesis microassay. NDV neutralizing (VN) and hemagglutination inhibition (HI) antibody responses were detected in birds vaccinated with LNDV and UVNDV. However, birds vaccinated with SDSNDV developed antibodies that were detected by western blot analysis but not by the VN or HI test. Protection from challenge was observed only in those birds that had VN or HI antibody response. That is, birds with demonstrable CMI and VN or HI antibody response were protected, whereas birds with demonstrable CMI but no VN or HI antibody response were not protected. In the second strategy, birds from SPF embryos were treated in ovo with cyclophosphamide (CY) to deplete immune cells. The birds were monitored and, at 2 wk of age, were selected for the presence of T-cell activity and the absence of B-cell activity. Birds that had a significant T-cell response, but not a B-cell response, were vaccinated with either LNDV, UVNDV, or PBS at 3 wk of age along with the corresponding CY-untreated control birds. The birds were booster vaccinated at 5 wk of age and were challenged with Texas GB strain of NDV at 6 wk of age. All birds vaccinated with LNDV or UVNDV had a specific CMI response to NDV, VN or HI NDV antibodies were detected in all CY-nontreated vaccinated birds and some of the CY-treated vaccinated birds that were found to have regenerated their B-cell function at 1 wk postbooster. The challenge results clearly revealed that CY-treated birds that had NDV-specific CMI and VN or HI antibody responses to LNDV or UVNDV were protected, as were the CY-nontreated vaccinated birds. However, birds that had NDV-specific CMI response but did not have VN or HI antibodies were not protected from challenge. The results from both strategies indicate that specific CMI to NDV by itself is not protective against virulent NDV challenge. The presence of VN or HI antibodies is necessary in providing protection from Newcastle disease.

Original languageEnglish (US)
Pages (from-to)145-154
Number of pages10
JournalAvian diseases
Volume44
Issue number1
DOIs
StatePublished - Jan 1 2000

Fingerprint

Newcastle Disease
Newcastle disease
Cellular Immunity
cell-mediated immunity
Newcastle disease virus
Birds
Immunity
immunity
birds
Hemagglutination
hemagglutination
cyclophosphamide
Cyclophosphamide
antibodies
Antibody Formation
B-lymphocytes
Specific Pathogen-Free Organisms
B-Lymphocytes
Antibodies
immune response

Keywords

  • Cell-mediated immune response
  • Cyclophosphamide
  • Newcastle disease virus

ASJC Scopus subject areas

  • Food Animals
  • Animal Science and Zoology
  • Immunology and Microbiology(all)

Cite this

Protective immunity against Newcastle disease : The role of cell-mediated immunity. / Reynolds, D. L.; Maraqa, A. D.

In: Avian diseases, Vol. 44, No. 1, 01.01.2000, p. 145-154.

Research output: Contribution to journalArticle

@article{0fdebf80706d439daf251c892ad6bfb9,
title = "Protective immunity against Newcastle disease: The role of cell-mediated immunity",
abstract = "The role of cell-mediated immunity (CMI) in protection of birds from Newcastle disease was investigated by two different strategies in which only Newcastle disease virus (NDV)-specific CMI was conveyed without neutralizing antibodies. In the first strategy, selected 3-wk-old specific-pathogen-free (SPF) birds were vaccinated with either live NDV (LNDV), ultraviolet-inactivated NDV (UVNDV), sodium dodecyl sulfate-treated NDV (SDSNDV), or phosphate-buffered saline (PBS) (negative control) by the subcutaneous route. Birds were booster vaccinated 2 wk later and challenged with the velogenic Texas GB strain of NDV 1 wk after booster. All vaccinated birds had specific CMI responses to NDV as measured by a blastogenesis microassay. NDV neutralizing (VN) and hemagglutination inhibition (HI) antibody responses were detected in birds vaccinated with LNDV and UVNDV. However, birds vaccinated with SDSNDV developed antibodies that were detected by western blot analysis but not by the VN or HI test. Protection from challenge was observed only in those birds that had VN or HI antibody response. That is, birds with demonstrable CMI and VN or HI antibody response were protected, whereas birds with demonstrable CMI but no VN or HI antibody response were not protected. In the second strategy, birds from SPF embryos were treated in ovo with cyclophosphamide (CY) to deplete immune cells. The birds were monitored and, at 2 wk of age, were selected for the presence of T-cell activity and the absence of B-cell activity. Birds that had a significant T-cell response, but not a B-cell response, were vaccinated with either LNDV, UVNDV, or PBS at 3 wk of age along with the corresponding CY-untreated control birds. The birds were booster vaccinated at 5 wk of age and were challenged with Texas GB strain of NDV at 6 wk of age. All birds vaccinated with LNDV or UVNDV had a specific CMI response to NDV, VN or HI NDV antibodies were detected in all CY-nontreated vaccinated birds and some of the CY-treated vaccinated birds that were found to have regenerated their B-cell function at 1 wk postbooster. The challenge results clearly revealed that CY-treated birds that had NDV-specific CMI and VN or HI antibody responses to LNDV or UVNDV were protected, as were the CY-nontreated vaccinated birds. However, birds that had NDV-specific CMI response but did not have VN or HI antibodies were not protected from challenge. The results from both strategies indicate that specific CMI to NDV by itself is not protective against virulent NDV challenge. The presence of VN or HI antibodies is necessary in providing protection from Newcastle disease.",
keywords = "Cell-mediated immune response, Cyclophosphamide, Newcastle disease virus",
author = "Reynolds, {D. L.} and Maraqa, {A. D.}",
year = "2000",
month = "1",
day = "1",
doi = "10.2307/1592518",
language = "English (US)",
volume = "44",
pages = "145--154",
journal = "Avian Diseases",
issn = "0005-2086",
publisher = "American Association of Avian Pathologists",
number = "1",

}

TY - JOUR

T1 - Protective immunity against Newcastle disease

T2 - The role of cell-mediated immunity

AU - Reynolds, D. L.

AU - Maraqa, A. D.

PY - 2000/1/1

Y1 - 2000/1/1

N2 - The role of cell-mediated immunity (CMI) in protection of birds from Newcastle disease was investigated by two different strategies in which only Newcastle disease virus (NDV)-specific CMI was conveyed without neutralizing antibodies. In the first strategy, selected 3-wk-old specific-pathogen-free (SPF) birds were vaccinated with either live NDV (LNDV), ultraviolet-inactivated NDV (UVNDV), sodium dodecyl sulfate-treated NDV (SDSNDV), or phosphate-buffered saline (PBS) (negative control) by the subcutaneous route. Birds were booster vaccinated 2 wk later and challenged with the velogenic Texas GB strain of NDV 1 wk after booster. All vaccinated birds had specific CMI responses to NDV as measured by a blastogenesis microassay. NDV neutralizing (VN) and hemagglutination inhibition (HI) antibody responses were detected in birds vaccinated with LNDV and UVNDV. However, birds vaccinated with SDSNDV developed antibodies that were detected by western blot analysis but not by the VN or HI test. Protection from challenge was observed only in those birds that had VN or HI antibody response. That is, birds with demonstrable CMI and VN or HI antibody response were protected, whereas birds with demonstrable CMI but no VN or HI antibody response were not protected. In the second strategy, birds from SPF embryos were treated in ovo with cyclophosphamide (CY) to deplete immune cells. The birds were monitored and, at 2 wk of age, were selected for the presence of T-cell activity and the absence of B-cell activity. Birds that had a significant T-cell response, but not a B-cell response, were vaccinated with either LNDV, UVNDV, or PBS at 3 wk of age along with the corresponding CY-untreated control birds. The birds were booster vaccinated at 5 wk of age and were challenged with Texas GB strain of NDV at 6 wk of age. All birds vaccinated with LNDV or UVNDV had a specific CMI response to NDV, VN or HI NDV antibodies were detected in all CY-nontreated vaccinated birds and some of the CY-treated vaccinated birds that were found to have regenerated their B-cell function at 1 wk postbooster. The challenge results clearly revealed that CY-treated birds that had NDV-specific CMI and VN or HI antibody responses to LNDV or UVNDV were protected, as were the CY-nontreated vaccinated birds. However, birds that had NDV-specific CMI response but did not have VN or HI antibodies were not protected from challenge. The results from both strategies indicate that specific CMI to NDV by itself is not protective against virulent NDV challenge. The presence of VN or HI antibodies is necessary in providing protection from Newcastle disease.

AB - The role of cell-mediated immunity (CMI) in protection of birds from Newcastle disease was investigated by two different strategies in which only Newcastle disease virus (NDV)-specific CMI was conveyed without neutralizing antibodies. In the first strategy, selected 3-wk-old specific-pathogen-free (SPF) birds were vaccinated with either live NDV (LNDV), ultraviolet-inactivated NDV (UVNDV), sodium dodecyl sulfate-treated NDV (SDSNDV), or phosphate-buffered saline (PBS) (negative control) by the subcutaneous route. Birds were booster vaccinated 2 wk later and challenged with the velogenic Texas GB strain of NDV 1 wk after booster. All vaccinated birds had specific CMI responses to NDV as measured by a blastogenesis microassay. NDV neutralizing (VN) and hemagglutination inhibition (HI) antibody responses were detected in birds vaccinated with LNDV and UVNDV. However, birds vaccinated with SDSNDV developed antibodies that were detected by western blot analysis but not by the VN or HI test. Protection from challenge was observed only in those birds that had VN or HI antibody response. That is, birds with demonstrable CMI and VN or HI antibody response were protected, whereas birds with demonstrable CMI but no VN or HI antibody response were not protected. In the second strategy, birds from SPF embryos were treated in ovo with cyclophosphamide (CY) to deplete immune cells. The birds were monitored and, at 2 wk of age, were selected for the presence of T-cell activity and the absence of B-cell activity. Birds that had a significant T-cell response, but not a B-cell response, were vaccinated with either LNDV, UVNDV, or PBS at 3 wk of age along with the corresponding CY-untreated control birds. The birds were booster vaccinated at 5 wk of age and were challenged with Texas GB strain of NDV at 6 wk of age. All birds vaccinated with LNDV or UVNDV had a specific CMI response to NDV, VN or HI NDV antibodies were detected in all CY-nontreated vaccinated birds and some of the CY-treated vaccinated birds that were found to have regenerated their B-cell function at 1 wk postbooster. The challenge results clearly revealed that CY-treated birds that had NDV-specific CMI and VN or HI antibody responses to LNDV or UVNDV were protected, as were the CY-nontreated vaccinated birds. However, birds that had NDV-specific CMI response but did not have VN or HI antibodies were not protected from challenge. The results from both strategies indicate that specific CMI to NDV by itself is not protective against virulent NDV challenge. The presence of VN or HI antibodies is necessary in providing protection from Newcastle disease.

KW - Cell-mediated immune response

KW - Cyclophosphamide

KW - Newcastle disease virus

UR - http://www.scopus.com/inward/record.url?scp=0034071267&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034071267&partnerID=8YFLogxK

U2 - 10.2307/1592518

DO - 10.2307/1592518

M3 - Article

C2 - 10737655

AN - SCOPUS:0034071267

VL - 44

SP - 145

EP - 154

JO - Avian Diseases

JF - Avian Diseases

SN - 0005-2086

IS - 1

ER -