Properties of individual embryonic primary afferents and their spinal projections in the rat

Károly Mirnics, H. Richard Koerber

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

Embryonic (E19-E20) and early postnatal (P2) spinal cords with intact saphenous and sciatic nerves were isolated and placed in aerated artificial cerebral spinal fluid (CSF). Intracellular recordings were made from cells in the L2-L6 dorsal root ganglia using microelectrodes filled with 3 M potassium acetate or 5% neurobiotin (NB) in 1 M potassium acetate. Several physiological properties of adequately impaled cells were measured, including peripheral conduction velocity, action potential (AP) amplitude and duration, duration of afterhyperpolarization (AHP), input impedance, rheobase, presence of inward rectifying current, and maximum somal firing frequency. The extent to which these properties are correlated also was determined. One cell per ganglion was injected with NB. Stained somata and their central projections in the spinal cord were visualized in serial 50 μm sections. Cell size was determined and the central morphology of the central projections examined. Although some fibers were in the process of growing into the spinal cord, others had established projections over several millimeters in the dorsal columns. Although most of these fibers supported projections in the gray matter, 22% only maintained fibers in the dorsal columns. Fibers with projections in the dorsal horn exhibited three types of morphology: projections confined to the superficial dorsal horn (laminae I, II); terminals confined to laminae III-V; and projections spanning laminae II-V. In addition, some embryonic fibers maintained projections to the dorsal horn that extended over five lumbar segments. Somal APs could be divided into two groups: broad spikes with inflections on their falling phase and narrow spikes without inflections. On average, cells with broad spikes (BS) had the following characteristics: slower peripheral conduction velocity, larger amplitude, higher rheobase and input impedance, longer AHP duration, and lower maximum firing frequency. There were significant correlations between conduction velocity and several of the physiological properties. Conduction velocity was negatively correlated with AP duration, rheobase, and input impedance and positively correlated with maximum firing frequency. Comparisons between spike shape and central morphology revealed that cells lacking collaterals in the gray matter and those with projections in the superficial dorsal horn always had broad somal spikes with inflections. Those with projections confined to laminae III-V always had narrow somal spikes (NS).

Original languageEnglish (US)
Pages (from-to)1590-1600
Number of pages11
JournalJournal of Neurophysiology
Volume78
Issue number3
DOIs
StatePublished - Sep 1997

Fingerprint

Potassium Acetate
Electric Impedance
Spinal Cord
Action Potentials
Substantia Gelatinosa
Spinal Ganglia
Carisoprodol
Microelectrodes
Sciatic Nerve
Spinal Cord Dorsal Horn
Cell Size
Ganglia
neurobiotin
Gray Matter

ASJC Scopus subject areas

  • Neuroscience(all)
  • Physiology

Cite this

Properties of individual embryonic primary afferents and their spinal projections in the rat. / Mirnics, Károly; Koerber, H. Richard.

In: Journal of Neurophysiology, Vol. 78, No. 3, 09.1997, p. 1590-1600.

Research output: Contribution to journalArticle

@article{4cf0ba2900e543448c95e264b427aff9,
title = "Properties of individual embryonic primary afferents and their spinal projections in the rat",
abstract = "Embryonic (E19-E20) and early postnatal (P2) spinal cords with intact saphenous and sciatic nerves were isolated and placed in aerated artificial cerebral spinal fluid (CSF). Intracellular recordings were made from cells in the L2-L6 dorsal root ganglia using microelectrodes filled with 3 M potassium acetate or 5{\%} neurobiotin (NB) in 1 M potassium acetate. Several physiological properties of adequately impaled cells were measured, including peripheral conduction velocity, action potential (AP) amplitude and duration, duration of afterhyperpolarization (AHP), input impedance, rheobase, presence of inward rectifying current, and maximum somal firing frequency. The extent to which these properties are correlated also was determined. One cell per ganglion was injected with NB. Stained somata and their central projections in the spinal cord were visualized in serial 50 μm sections. Cell size was determined and the central morphology of the central projections examined. Although some fibers were in the process of growing into the spinal cord, others had established projections over several millimeters in the dorsal columns. Although most of these fibers supported projections in the gray matter, 22{\%} only maintained fibers in the dorsal columns. Fibers with projections in the dorsal horn exhibited three types of morphology: projections confined to the superficial dorsal horn (laminae I, II); terminals confined to laminae III-V; and projections spanning laminae II-V. In addition, some embryonic fibers maintained projections to the dorsal horn that extended over five lumbar segments. Somal APs could be divided into two groups: broad spikes with inflections on their falling phase and narrow spikes without inflections. On average, cells with broad spikes (BS) had the following characteristics: slower peripheral conduction velocity, larger amplitude, higher rheobase and input impedance, longer AHP duration, and lower maximum firing frequency. There were significant correlations between conduction velocity and several of the physiological properties. Conduction velocity was negatively correlated with AP duration, rheobase, and input impedance and positively correlated with maximum firing frequency. Comparisons between spike shape and central morphology revealed that cells lacking collaterals in the gray matter and those with projections in the superficial dorsal horn always had broad somal spikes with inflections. Those with projections confined to laminae III-V always had narrow somal spikes (NS).",
author = "K{\'a}roly Mirnics and Koerber, {H. Richard}",
year = "1997",
month = "9",
doi = "10.1152/jn.1997.78.3.1590",
language = "English (US)",
volume = "78",
pages = "1590--1600",
journal = "Journal of Neurophysiology",
issn = "0022-3077",
publisher = "American Physiological Society",
number = "3",

}

TY - JOUR

T1 - Properties of individual embryonic primary afferents and their spinal projections in the rat

AU - Mirnics, Károly

AU - Koerber, H. Richard

PY - 1997/9

Y1 - 1997/9

N2 - Embryonic (E19-E20) and early postnatal (P2) spinal cords with intact saphenous and sciatic nerves were isolated and placed in aerated artificial cerebral spinal fluid (CSF). Intracellular recordings were made from cells in the L2-L6 dorsal root ganglia using microelectrodes filled with 3 M potassium acetate or 5% neurobiotin (NB) in 1 M potassium acetate. Several physiological properties of adequately impaled cells were measured, including peripheral conduction velocity, action potential (AP) amplitude and duration, duration of afterhyperpolarization (AHP), input impedance, rheobase, presence of inward rectifying current, and maximum somal firing frequency. The extent to which these properties are correlated also was determined. One cell per ganglion was injected with NB. Stained somata and their central projections in the spinal cord were visualized in serial 50 μm sections. Cell size was determined and the central morphology of the central projections examined. Although some fibers were in the process of growing into the spinal cord, others had established projections over several millimeters in the dorsal columns. Although most of these fibers supported projections in the gray matter, 22% only maintained fibers in the dorsal columns. Fibers with projections in the dorsal horn exhibited three types of morphology: projections confined to the superficial dorsal horn (laminae I, II); terminals confined to laminae III-V; and projections spanning laminae II-V. In addition, some embryonic fibers maintained projections to the dorsal horn that extended over five lumbar segments. Somal APs could be divided into two groups: broad spikes with inflections on their falling phase and narrow spikes without inflections. On average, cells with broad spikes (BS) had the following characteristics: slower peripheral conduction velocity, larger amplitude, higher rheobase and input impedance, longer AHP duration, and lower maximum firing frequency. There were significant correlations between conduction velocity and several of the physiological properties. Conduction velocity was negatively correlated with AP duration, rheobase, and input impedance and positively correlated with maximum firing frequency. Comparisons between spike shape and central morphology revealed that cells lacking collaterals in the gray matter and those with projections in the superficial dorsal horn always had broad somal spikes with inflections. Those with projections confined to laminae III-V always had narrow somal spikes (NS).

AB - Embryonic (E19-E20) and early postnatal (P2) spinal cords with intact saphenous and sciatic nerves were isolated and placed in aerated artificial cerebral spinal fluid (CSF). Intracellular recordings were made from cells in the L2-L6 dorsal root ganglia using microelectrodes filled with 3 M potassium acetate or 5% neurobiotin (NB) in 1 M potassium acetate. Several physiological properties of adequately impaled cells were measured, including peripheral conduction velocity, action potential (AP) amplitude and duration, duration of afterhyperpolarization (AHP), input impedance, rheobase, presence of inward rectifying current, and maximum somal firing frequency. The extent to which these properties are correlated also was determined. One cell per ganglion was injected with NB. Stained somata and their central projections in the spinal cord were visualized in serial 50 μm sections. Cell size was determined and the central morphology of the central projections examined. Although some fibers were in the process of growing into the spinal cord, others had established projections over several millimeters in the dorsal columns. Although most of these fibers supported projections in the gray matter, 22% only maintained fibers in the dorsal columns. Fibers with projections in the dorsal horn exhibited three types of morphology: projections confined to the superficial dorsal horn (laminae I, II); terminals confined to laminae III-V; and projections spanning laminae II-V. In addition, some embryonic fibers maintained projections to the dorsal horn that extended over five lumbar segments. Somal APs could be divided into two groups: broad spikes with inflections on their falling phase and narrow spikes without inflections. On average, cells with broad spikes (BS) had the following characteristics: slower peripheral conduction velocity, larger amplitude, higher rheobase and input impedance, longer AHP duration, and lower maximum firing frequency. There were significant correlations between conduction velocity and several of the physiological properties. Conduction velocity was negatively correlated with AP duration, rheobase, and input impedance and positively correlated with maximum firing frequency. Comparisons between spike shape and central morphology revealed that cells lacking collaterals in the gray matter and those with projections in the superficial dorsal horn always had broad somal spikes with inflections. Those with projections confined to laminae III-V always had narrow somal spikes (NS).

UR - http://www.scopus.com/inward/record.url?scp=0030759965&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030759965&partnerID=8YFLogxK

U2 - 10.1152/jn.1997.78.3.1590

DO - 10.1152/jn.1997.78.3.1590

M3 - Article

C2 - 9310445

AN - SCOPUS:0030759965

VL - 78

SP - 1590

EP - 1600

JO - Journal of Neurophysiology

JF - Journal of Neurophysiology

SN - 0022-3077

IS - 3

ER -