Primase structure and function.

Research output: Contribution to journalReview article

28 Citations (Scopus)

Abstract

Primase is the ssDNA-dependent RNA polymerase that synthesizes RNA primers during DNA replication. In common with all DNA and RNA polymerases, primase has structural and functional features involved in polymer elongation. As RNA polymerase, it has structural and functional features for initiating chain synthesis. As a primase, it has structural and functional features for initiating chain synthesis on ssDNA. Using amino acid sequence analysis the structure of Escherichia coli primase responsible for binding zinc, at least three magnesium, and DnaB helicase has been identified. One of the magnesium binding motifs resembles the ¿active magnesium¿ motif found in all DNA and RNA polymerases. This motif can be considered to be involved in phosphodiester bond formation. The region with the putatuve zinc binding motif is the most highly conserved portion, including more than 25% of identical residues among bacterial primases. The function of the zinc finger may be to bind ssDNA in a sequence-specific manner. Primase has ¿RNAP¿ motif, a sequence found in all RNA polymerases which may be involved in chain initiation. Many of the observations concerning primer synthesis initiation in vivo have been reproduced by several of the in vitro assay systems. Important among these is that Okazaki fragments are initiated in vivo from d(CTG) most of the time. This trinucleotide initiation specificity has been shown to be an intrinsic property of pure primase in vitro. Using artificial ssDNA templates, primase has been shown to be the slowest and most error-prone polymerase yet studied. The rate-determining step is the first phosphodiester bond formed. Any protein which can influence either the dinucleotide synthesis rate or primase-ssDNA binding affinity will also play a key role in the regulation of primer synthesis initiation.

Original languageEnglish (US)
Pages (from-to)171-178
Number of pages8
JournalIndian journal of biochemistry & biophysics
Volume32
Issue number4
StatePublished - Aug 1995

Fingerprint

DNA Primase
DNA-Directed RNA Polymerases
Magnesium
Zinc
DNA-Directed DNA Polymerase
DnaB Helicases
Zinc Fingers
Protein Sequence Analysis
RNA
DNA Replication
Escherichia coli
Elongation
Assays
Polymers
Amino Acids

ASJC Scopus subject areas

  • Biophysics
  • Biochemistry

Cite this

Primase structure and function. / Griep, M. A.

In: Indian journal of biochemistry & biophysics, Vol. 32, No. 4, 08.1995, p. 171-178.

Research output: Contribution to journalReview article

@article{aab6d6b547bf472ba1aced4869b33dd1,
title = "Primase structure and function.",
abstract = "Primase is the ssDNA-dependent RNA polymerase that synthesizes RNA primers during DNA replication. In common with all DNA and RNA polymerases, primase has structural and functional features involved in polymer elongation. As RNA polymerase, it has structural and functional features for initiating chain synthesis. As a primase, it has structural and functional features for initiating chain synthesis on ssDNA. Using amino acid sequence analysis the structure of Escherichia coli primase responsible for binding zinc, at least three magnesium, and DnaB helicase has been identified. One of the magnesium binding motifs resembles the ¿active magnesium¿ motif found in all DNA and RNA polymerases. This motif can be considered to be involved in phosphodiester bond formation. The region with the putatuve zinc binding motif is the most highly conserved portion, including more than 25{\%} of identical residues among bacterial primases. The function of the zinc finger may be to bind ssDNA in a sequence-specific manner. Primase has ¿RNAP¿ motif, a sequence found in all RNA polymerases which may be involved in chain initiation. Many of the observations concerning primer synthesis initiation in vivo have been reproduced by several of the in vitro assay systems. Important among these is that Okazaki fragments are initiated in vivo from d(CTG) most of the time. This trinucleotide initiation specificity has been shown to be an intrinsic property of pure primase in vitro. Using artificial ssDNA templates, primase has been shown to be the slowest and most error-prone polymerase yet studied. The rate-determining step is the first phosphodiester bond formed. Any protein which can influence either the dinucleotide synthesis rate or primase-ssDNA binding affinity will also play a key role in the regulation of primer synthesis initiation.",
author = "Griep, {M. A.}",
year = "1995",
month = "8",
language = "English (US)",
volume = "32",
pages = "171--178",
journal = "Indian Journal of Biochemistry and Biophysics",
issn = "0301-1208",
publisher = "National Institute of Science Communication and Information Resources (NISCAIR)",
number = "4",

}

TY - JOUR

T1 - Primase structure and function.

AU - Griep, M. A.

PY - 1995/8

Y1 - 1995/8

N2 - Primase is the ssDNA-dependent RNA polymerase that synthesizes RNA primers during DNA replication. In common with all DNA and RNA polymerases, primase has structural and functional features involved in polymer elongation. As RNA polymerase, it has structural and functional features for initiating chain synthesis. As a primase, it has structural and functional features for initiating chain synthesis on ssDNA. Using amino acid sequence analysis the structure of Escherichia coli primase responsible for binding zinc, at least three magnesium, and DnaB helicase has been identified. One of the magnesium binding motifs resembles the ¿active magnesium¿ motif found in all DNA and RNA polymerases. This motif can be considered to be involved in phosphodiester bond formation. The region with the putatuve zinc binding motif is the most highly conserved portion, including more than 25% of identical residues among bacterial primases. The function of the zinc finger may be to bind ssDNA in a sequence-specific manner. Primase has ¿RNAP¿ motif, a sequence found in all RNA polymerases which may be involved in chain initiation. Many of the observations concerning primer synthesis initiation in vivo have been reproduced by several of the in vitro assay systems. Important among these is that Okazaki fragments are initiated in vivo from d(CTG) most of the time. This trinucleotide initiation specificity has been shown to be an intrinsic property of pure primase in vitro. Using artificial ssDNA templates, primase has been shown to be the slowest and most error-prone polymerase yet studied. The rate-determining step is the first phosphodiester bond formed. Any protein which can influence either the dinucleotide synthesis rate or primase-ssDNA binding affinity will also play a key role in the regulation of primer synthesis initiation.

AB - Primase is the ssDNA-dependent RNA polymerase that synthesizes RNA primers during DNA replication. In common with all DNA and RNA polymerases, primase has structural and functional features involved in polymer elongation. As RNA polymerase, it has structural and functional features for initiating chain synthesis. As a primase, it has structural and functional features for initiating chain synthesis on ssDNA. Using amino acid sequence analysis the structure of Escherichia coli primase responsible for binding zinc, at least three magnesium, and DnaB helicase has been identified. One of the magnesium binding motifs resembles the ¿active magnesium¿ motif found in all DNA and RNA polymerases. This motif can be considered to be involved in phosphodiester bond formation. The region with the putatuve zinc binding motif is the most highly conserved portion, including more than 25% of identical residues among bacterial primases. The function of the zinc finger may be to bind ssDNA in a sequence-specific manner. Primase has ¿RNAP¿ motif, a sequence found in all RNA polymerases which may be involved in chain initiation. Many of the observations concerning primer synthesis initiation in vivo have been reproduced by several of the in vitro assay systems. Important among these is that Okazaki fragments are initiated in vivo from d(CTG) most of the time. This trinucleotide initiation specificity has been shown to be an intrinsic property of pure primase in vitro. Using artificial ssDNA templates, primase has been shown to be the slowest and most error-prone polymerase yet studied. The rate-determining step is the first phosphodiester bond formed. Any protein which can influence either the dinucleotide synthesis rate or primase-ssDNA binding affinity will also play a key role in the regulation of primer synthesis initiation.

UR - http://www.scopus.com/inward/record.url?scp=0029347972&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0029347972&partnerID=8YFLogxK

M3 - Review article

C2 - 8655184

AN - SCOPUS:0029347972

VL - 32

SP - 171

EP - 178

JO - Indian Journal of Biochemistry and Biophysics

JF - Indian Journal of Biochemistry and Biophysics

SN - 0301-1208

IS - 4

ER -