Potassium-sparing effects of furosemide in mice on high-potassium diets

Bangchen Wang, Steven C. Sansom

Research output: Contribution to journalReview article

Abstract

In individuals on a regular “Western” diet, furosemide induces a kaliuresis and reduction in plasma K concentration by inhibiting Na reabsorption in the thick ascending limb of Henle’s loop, enhancing delivery of Na to the aldosterone-sensitive distal nephron. In the aldosterone-sensitive distal nephron, the increased Na delivery stimulates K wasting due to an exaggerated exchange of epithelial Na channel-mediated Na reabsorption of secreted K. The effects of furosemide are different in mice fed a high-K, alkaline (HK) diet: the large-conductance Ca-activated K (BK) channel, in conjunction with the BK β4-subunit (BK-α/β4), mediates K secretion from intercalated cells (IC) of the connecting tubule and collecting ducts. The urinary alkaline load is necessary for BK-α/β4-mediated K secretion in HK diet-fed mice. However, furosemide acidifies the urine by increasing vacuolar ATPase expression and acid secretion from IC, thereby inhibiting BK-α/β4-mediated K secretion and sparing K. In mice fed a low-Na, high-K (LNaHK) diet, furosemide causes a greater increase in plasma K concentration and reduction in K excretion than in HK diet-fed mice. Micropuncture of the early distal tubule of mice fed a LNaHK diet, but not a regular or a HK diet, reveals K secretion in the thick ascending limb of Henle’s loop. The sites of action of K secretion in individuals consuming a high-K diet should be taken into account when diuretic agents known to waste K with low or moderate K intakes are prescribed.

Original languageEnglish (US)
Pages (from-to)F970-F973
JournalAmerican Journal of Physiology - Renal Physiology
Volume316
Issue number5
DOIs
StatePublished - May 2019

Fingerprint

Furosemide
Potassium
Diet
Nephrons
Aldosterone
Extremities
Large-Conductance Calcium-Activated Potassium Channels
Vacuolar Proton-Translocating ATPases
Epithelial Sodium Channels
Punctures
Diuretics
Urine
Acids

Keywords

  • BK
  • Furosemide
  • High-K diet
  • ROMK

ASJC Scopus subject areas

  • Physiology
  • Urology

Cite this

Potassium-sparing effects of furosemide in mice on high-potassium diets. / Wang, Bangchen; Sansom, Steven C.

In: American Journal of Physiology - Renal Physiology, Vol. 316, No. 5, 05.2019, p. F970-F973.

Research output: Contribution to journalReview article

@article{c0bc5f765da74911bd4ff2482b930f73,
title = "Potassium-sparing effects of furosemide in mice on high-potassium diets",
abstract = "In individuals on a regular “Western” diet, furosemide induces a kaliuresis and reduction in plasma K concentration by inhibiting Na reabsorption in the thick ascending limb of Henle’s loop, enhancing delivery of Na to the aldosterone-sensitive distal nephron. In the aldosterone-sensitive distal nephron, the increased Na delivery stimulates K wasting due to an exaggerated exchange of epithelial Na channel-mediated Na reabsorption of secreted K. The effects of furosemide are different in mice fed a high-K, alkaline (HK) diet: the large-conductance Ca-activated K (BK) channel, in conjunction with the BK β4-subunit (BK-α/β4), mediates K secretion from intercalated cells (IC) of the connecting tubule and collecting ducts. The urinary alkaline load is necessary for BK-α/β4-mediated K secretion in HK diet-fed mice. However, furosemide acidifies the urine by increasing vacuolar ATPase expression and acid secretion from IC, thereby inhibiting BK-α/β4-mediated K secretion and sparing K. In mice fed a low-Na, high-K (LNaHK) diet, furosemide causes a greater increase in plasma K concentration and reduction in K excretion than in HK diet-fed mice. Micropuncture of the early distal tubule of mice fed a LNaHK diet, but not a regular or a HK diet, reveals K secretion in the thick ascending limb of Henle’s loop. The sites of action of K secretion in individuals consuming a high-K diet should be taken into account when diuretic agents known to waste K with low or moderate K intakes are prescribed.",
keywords = "BK, Furosemide, High-K diet, ROMK",
author = "Bangchen Wang and Sansom, {Steven C.}",
year = "2019",
month = "5",
doi = "10.1152/ajprenal.00614.2018",
language = "English (US)",
volume = "316",
pages = "F970--F973",
journal = "American Journal of Physiology - Renal Physiology",
issn = "0363-6127",
publisher = "American Physiological Society",
number = "5",

}

TY - JOUR

T1 - Potassium-sparing effects of furosemide in mice on high-potassium diets

AU - Wang, Bangchen

AU - Sansom, Steven C.

PY - 2019/5

Y1 - 2019/5

N2 - In individuals on a regular “Western” diet, furosemide induces a kaliuresis and reduction in plasma K concentration by inhibiting Na reabsorption in the thick ascending limb of Henle’s loop, enhancing delivery of Na to the aldosterone-sensitive distal nephron. In the aldosterone-sensitive distal nephron, the increased Na delivery stimulates K wasting due to an exaggerated exchange of epithelial Na channel-mediated Na reabsorption of secreted K. The effects of furosemide are different in mice fed a high-K, alkaline (HK) diet: the large-conductance Ca-activated K (BK) channel, in conjunction with the BK β4-subunit (BK-α/β4), mediates K secretion from intercalated cells (IC) of the connecting tubule and collecting ducts. The urinary alkaline load is necessary for BK-α/β4-mediated K secretion in HK diet-fed mice. However, furosemide acidifies the urine by increasing vacuolar ATPase expression and acid secretion from IC, thereby inhibiting BK-α/β4-mediated K secretion and sparing K. In mice fed a low-Na, high-K (LNaHK) diet, furosemide causes a greater increase in plasma K concentration and reduction in K excretion than in HK diet-fed mice. Micropuncture of the early distal tubule of mice fed a LNaHK diet, but not a regular or a HK diet, reveals K secretion in the thick ascending limb of Henle’s loop. The sites of action of K secretion in individuals consuming a high-K diet should be taken into account when diuretic agents known to waste K with low or moderate K intakes are prescribed.

AB - In individuals on a regular “Western” diet, furosemide induces a kaliuresis and reduction in plasma K concentration by inhibiting Na reabsorption in the thick ascending limb of Henle’s loop, enhancing delivery of Na to the aldosterone-sensitive distal nephron. In the aldosterone-sensitive distal nephron, the increased Na delivery stimulates K wasting due to an exaggerated exchange of epithelial Na channel-mediated Na reabsorption of secreted K. The effects of furosemide are different in mice fed a high-K, alkaline (HK) diet: the large-conductance Ca-activated K (BK) channel, in conjunction with the BK β4-subunit (BK-α/β4), mediates K secretion from intercalated cells (IC) of the connecting tubule and collecting ducts. The urinary alkaline load is necessary for BK-α/β4-mediated K secretion in HK diet-fed mice. However, furosemide acidifies the urine by increasing vacuolar ATPase expression and acid secretion from IC, thereby inhibiting BK-α/β4-mediated K secretion and sparing K. In mice fed a low-Na, high-K (LNaHK) diet, furosemide causes a greater increase in plasma K concentration and reduction in K excretion than in HK diet-fed mice. Micropuncture of the early distal tubule of mice fed a LNaHK diet, but not a regular or a HK diet, reveals K secretion in the thick ascending limb of Henle’s loop. The sites of action of K secretion in individuals consuming a high-K diet should be taken into account when diuretic agents known to waste K with low or moderate K intakes are prescribed.

KW - BK

KW - Furosemide

KW - High-K diet

KW - ROMK

UR - http://www.scopus.com/inward/record.url?scp=85065759220&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85065759220&partnerID=8YFLogxK

U2 - 10.1152/ajprenal.00614.2018

DO - 10.1152/ajprenal.00614.2018

M3 - Review article

C2 - 30838871

AN - SCOPUS:85065759220

VL - 316

SP - F970-F973

JO - American Journal of Physiology - Renal Physiology

JF - American Journal of Physiology - Renal Physiology

SN - 0363-6127

IS - 5

ER -