Physical controls on directed virus assembly at nanoscale chemical templates

Chin Li Cheung, Sung Wook Chung, Anju Chatterji, Tianwei Lin, John E. Johnson, Saphon Hok, Julie Perkins, James J. De Yoreo

Research output: Contribution to journalArticle

43 Scopus citations

Abstract

Viruses are attractive building blocks for nanoscale heterostructures, but little is understood about the physical principles governing their directed assembly. In situ force microscopy was used to investigate organization of Cowpea Mosaic Virus engineered to bind specifically and reversibly at nanoscale chemical templates with sub-30 nm features. Morphological evolution and assembly kinetics were measured as virus flux and inter-viral potential were varied. The resulting morphologies were similar to those of atomic-scale epitaxial systems, but the underlying thermodynamics was analogous to that of colloidal systems in confined geometries. The 1D templates biased the location of initial cluster formation, introduced asymmetric sticking probabilities, and drove 1D and 2D condensation at sub-critical volume fractions. The growth kinetics followed a t1/2 law controlled by the slow diffusion of viruses. The ability of poly(ethylene glycol) (PEG) to induce the lateral expansion of virus clusters away from the 1D templates suggests a significant role for weak interactions.

Original languageEnglish (US)
Pages (from-to)10801-10807
Number of pages7
JournalJournal of the American Chemical Society
Volume128
Issue number33
DOIs
StatePublished - Aug 23 2006

    Fingerprint

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Cite this

Cheung, C. L., Chung, S. W., Chatterji, A., Lin, T., Johnson, J. E., Hok, S., Perkins, J., & De Yoreo, J. J. (2006). Physical controls on directed virus assembly at nanoscale chemical templates. Journal of the American Chemical Society, 128(33), 10801-10807. https://doi.org/10.1021/ja0616884