Phosphorylation of vesicular stomatitis virus phosphoprotein P is indispensable for virus growth

Subash C. Das, Asit K Pattnaik

Research output: Contribution to journalArticle

38 Citations (Scopus)

Abstract

The phosphoprotein (P) of vesicular stomatitis virus (VSV) is an essential subunit of the viral RNA-dependent RNA polymerase (RdRp) complex. It is phosphorylated at two different domains. Using defective interfering (DI) RNA or minigenomic RNA templates, we previously demonstrated that phosphorylation within the amino-terminal domain I is essential for transcription, whereas phosphorylation within the carboxy-terminal domain II is necessary for replication. For the present study, we examined the role of the phosphorylation of residues in these domains in the life cycle of VSV. Various mutant P coding sequences were inserted into a full-length cDNA clone of VSV, and the virus recovery, kinetics of growth, and mRNA and protein synthesis were examined. We observed that virus recovery was completely abolished when all three phosphate acceptor sites in domain I or both sites in domain II were replaced with alanine. Single or double mutations in domain I (with the exception of P60/64) or single mutations in domain II had no adverse effect on virus recovery. VSVP227, carrying alanine at position 227, showed reduced kinetics of virus growth but increased kinetics of viral mRNA synthesis in infected cells. More interestingly, this particular virus exhibited a significantly reduced cytopathic effects and apoptosis in infected cells, implying that P may be involved in these processes. Furthermore, we found that DI RNAs of different sizes were generated by high-multiplicity passaging of various mutant VSVs, indicating that the viral RdRp may play a significant role in the process of DI particle generation. Taken together, our results suggest that the phosphorylation of residues in domains I and II of VSV P is indispensable for virus growth.

Original languageEnglish (US)
Pages (from-to)6420-6430
Number of pages11
JournalJournal of virology
Volume78
Issue number12
DOIs
StatePublished - Jun 1 2004

Fingerprint

Vesiculovirus
Vesicular Stomatitis
phosphoproteins
Phosphoproteins
phosphorylation
Phosphorylation
Viruses
viruses
RNA-directed RNA polymerase
Growth
RNA
kinetics
alanine
RNA Replicase
mutation
Viral RNA
mutants
cytopathogenicity
Alanine
life cycle (organisms)

ASJC Scopus subject areas

  • Microbiology
  • Immunology
  • Insect Science
  • Virology

Cite this

Phosphorylation of vesicular stomatitis virus phosphoprotein P is indispensable for virus growth. / Das, Subash C.; Pattnaik, Asit K.

In: Journal of virology, Vol. 78, No. 12, 01.06.2004, p. 6420-6430.

Research output: Contribution to journalArticle

@article{8ca49e8f06404510bca7e7d1fec294b3,
title = "Phosphorylation of vesicular stomatitis virus phosphoprotein P is indispensable for virus growth",
abstract = "The phosphoprotein (P) of vesicular stomatitis virus (VSV) is an essential subunit of the viral RNA-dependent RNA polymerase (RdRp) complex. It is phosphorylated at two different domains. Using defective interfering (DI) RNA or minigenomic RNA templates, we previously demonstrated that phosphorylation within the amino-terminal domain I is essential for transcription, whereas phosphorylation within the carboxy-terminal domain II is necessary for replication. For the present study, we examined the role of the phosphorylation of residues in these domains in the life cycle of VSV. Various mutant P coding sequences were inserted into a full-length cDNA clone of VSV, and the virus recovery, kinetics of growth, and mRNA and protein synthesis were examined. We observed that virus recovery was completely abolished when all three phosphate acceptor sites in domain I or both sites in domain II were replaced with alanine. Single or double mutations in domain I (with the exception of P60/64) or single mutations in domain II had no adverse effect on virus recovery. VSVP227, carrying alanine at position 227, showed reduced kinetics of virus growth but increased kinetics of viral mRNA synthesis in infected cells. More interestingly, this particular virus exhibited a significantly reduced cytopathic effects and apoptosis in infected cells, implying that P may be involved in these processes. Furthermore, we found that DI RNAs of different sizes were generated by high-multiplicity passaging of various mutant VSVs, indicating that the viral RdRp may play a significant role in the process of DI particle generation. Taken together, our results suggest that the phosphorylation of residues in domains I and II of VSV P is indispensable for virus growth.",
author = "Das, {Subash C.} and Pattnaik, {Asit K}",
year = "2004",
month = "6",
day = "1",
doi = "10.1128/JVI.78.12.6420-6430.2004",
language = "English (US)",
volume = "78",
pages = "6420--6430",
journal = "Journal of Virology",
issn = "0022-538X",
publisher = "American Society for Microbiology",
number = "12",

}

TY - JOUR

T1 - Phosphorylation of vesicular stomatitis virus phosphoprotein P is indispensable for virus growth

AU - Das, Subash C.

AU - Pattnaik, Asit K

PY - 2004/6/1

Y1 - 2004/6/1

N2 - The phosphoprotein (P) of vesicular stomatitis virus (VSV) is an essential subunit of the viral RNA-dependent RNA polymerase (RdRp) complex. It is phosphorylated at two different domains. Using defective interfering (DI) RNA or minigenomic RNA templates, we previously demonstrated that phosphorylation within the amino-terminal domain I is essential for transcription, whereas phosphorylation within the carboxy-terminal domain II is necessary for replication. For the present study, we examined the role of the phosphorylation of residues in these domains in the life cycle of VSV. Various mutant P coding sequences were inserted into a full-length cDNA clone of VSV, and the virus recovery, kinetics of growth, and mRNA and protein synthesis were examined. We observed that virus recovery was completely abolished when all three phosphate acceptor sites in domain I or both sites in domain II were replaced with alanine. Single or double mutations in domain I (with the exception of P60/64) or single mutations in domain II had no adverse effect on virus recovery. VSVP227, carrying alanine at position 227, showed reduced kinetics of virus growth but increased kinetics of viral mRNA synthesis in infected cells. More interestingly, this particular virus exhibited a significantly reduced cytopathic effects and apoptosis in infected cells, implying that P may be involved in these processes. Furthermore, we found that DI RNAs of different sizes were generated by high-multiplicity passaging of various mutant VSVs, indicating that the viral RdRp may play a significant role in the process of DI particle generation. Taken together, our results suggest that the phosphorylation of residues in domains I and II of VSV P is indispensable for virus growth.

AB - The phosphoprotein (P) of vesicular stomatitis virus (VSV) is an essential subunit of the viral RNA-dependent RNA polymerase (RdRp) complex. It is phosphorylated at two different domains. Using defective interfering (DI) RNA or minigenomic RNA templates, we previously demonstrated that phosphorylation within the amino-terminal domain I is essential for transcription, whereas phosphorylation within the carboxy-terminal domain II is necessary for replication. For the present study, we examined the role of the phosphorylation of residues in these domains in the life cycle of VSV. Various mutant P coding sequences were inserted into a full-length cDNA clone of VSV, and the virus recovery, kinetics of growth, and mRNA and protein synthesis were examined. We observed that virus recovery was completely abolished when all three phosphate acceptor sites in domain I or both sites in domain II were replaced with alanine. Single or double mutations in domain I (with the exception of P60/64) or single mutations in domain II had no adverse effect on virus recovery. VSVP227, carrying alanine at position 227, showed reduced kinetics of virus growth but increased kinetics of viral mRNA synthesis in infected cells. More interestingly, this particular virus exhibited a significantly reduced cytopathic effects and apoptosis in infected cells, implying that P may be involved in these processes. Furthermore, we found that DI RNAs of different sizes were generated by high-multiplicity passaging of various mutant VSVs, indicating that the viral RdRp may play a significant role in the process of DI particle generation. Taken together, our results suggest that the phosphorylation of residues in domains I and II of VSV P is indispensable for virus growth.

UR - http://www.scopus.com/inward/record.url?scp=2642563538&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=2642563538&partnerID=8YFLogxK

U2 - 10.1128/JVI.78.12.6420-6430.2004

DO - 10.1128/JVI.78.12.6420-6430.2004

M3 - Article

C2 - 15163735

AN - SCOPUS:2642563538

VL - 78

SP - 6420

EP - 6430

JO - Journal of Virology

JF - Journal of Virology

SN - 0022-538X

IS - 12

ER -