Phospholipid environment alters hormone-sensitivity of the purified insulin receptor kinase.

R. E. Lewis, M. P. Czech

Research output: Contribution to journalArticle

27 Citations (Scopus)

Abstract

Insulin receptor kinase, affinity-purified by adsorption and elution from immobilized insulin, is stimulated 2-3-fold by insulin in detergent solution. Reconstitution of the receptor kinase into leaky vesicles containing phosphatidylcholine and phosphatidylethanolamine (1:1, w/w) by detergent removal on Sephadex G-50 results in the complete loss of receptor kinase sensitivity to activation by insulin. Insulin receptors in these vesicles also exhibit an increase in their apparent affinity for 125I-insulin (Kd = 0.12 nM versus 0.76 nM). Inclusion of 8.3-16.7% phosphatidylserine into the reconstituted vesicles restores 40-50% of the insulin-sensitivity to the receptor kinase. An elevated apparent affinity for 125I-insulin of insulin receptors in vesicles containing phosphatidylcholine and phosphatidylethanolamine is also restored to the value observed in detergent solution by the inclusion of phosphatidylserine in the reconstituted system. The effect of phosphatidylserine on insulin receptor kinase appears specific, because cholesterol, phosphatidylinositol and phosphatidic acid are all unable to restore insulin-sensitivity to the receptor kinase. Autophosphorylation sites on the insulin receptor as analysed by h.p.l.c. of tryptic 32P-labelled receptor phosphopeptides are not different for insulin receptors autophosphorylated in detergent solution or for the reconstituted vesicles in the presence or absence of phosphatidylserine. These data indicate that the phospholipid environment of insulin receptors can modulate its binding and kinase activity, and phosphatidylserine acts to restore insulin-sensitivity to the receptor kinase incorporated into phosphatidylcholine/phosphatidylethanolamine vesicles.

Original languageEnglish (US)
Pages (from-to)829-836
Number of pages8
JournalThe Biochemical journal
Volume248
Issue number3
DOIs
StatePublished - Dec 15 1987

Fingerprint

Insulin Receptor
Phospholipids
Phosphotransferases
Hormones
Phosphatidylserines
Insulin
Detergents
Phosphatidylcholines
Insulin Resistance
Phosphopeptides
Phosphatidic Acids
Phosphatidylinositols
Adsorption
Chemical activation
Cholesterol

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Cite this

Phospholipid environment alters hormone-sensitivity of the purified insulin receptor kinase. / Lewis, R. E.; Czech, M. P.

In: The Biochemical journal, Vol. 248, No. 3, 15.12.1987, p. 829-836.

Research output: Contribution to journalArticle

@article{0489f7f8d2404a55b75339c909a45a01,
title = "Phospholipid environment alters hormone-sensitivity of the purified insulin receptor kinase.",
abstract = "Insulin receptor kinase, affinity-purified by adsorption and elution from immobilized insulin, is stimulated 2-3-fold by insulin in detergent solution. Reconstitution of the receptor kinase into leaky vesicles containing phosphatidylcholine and phosphatidylethanolamine (1:1, w/w) by detergent removal on Sephadex G-50 results in the complete loss of receptor kinase sensitivity to activation by insulin. Insulin receptors in these vesicles also exhibit an increase in their apparent affinity for 125I-insulin (Kd = 0.12 nM versus 0.76 nM). Inclusion of 8.3-16.7{\%} phosphatidylserine into the reconstituted vesicles restores 40-50{\%} of the insulin-sensitivity to the receptor kinase. An elevated apparent affinity for 125I-insulin of insulin receptors in vesicles containing phosphatidylcholine and phosphatidylethanolamine is also restored to the value observed in detergent solution by the inclusion of phosphatidylserine in the reconstituted system. The effect of phosphatidylserine on insulin receptor kinase appears specific, because cholesterol, phosphatidylinositol and phosphatidic acid are all unable to restore insulin-sensitivity to the receptor kinase. Autophosphorylation sites on the insulin receptor as analysed by h.p.l.c. of tryptic 32P-labelled receptor phosphopeptides are not different for insulin receptors autophosphorylated in detergent solution or for the reconstituted vesicles in the presence or absence of phosphatidylserine. These data indicate that the phospholipid environment of insulin receptors can modulate its binding and kinase activity, and phosphatidylserine acts to restore insulin-sensitivity to the receptor kinase incorporated into phosphatidylcholine/phosphatidylethanolamine vesicles.",
author = "Lewis, {R. E.} and Czech, {M. P.}",
year = "1987",
month = "12",
day = "15",
doi = "10.1042/bj2480829",
language = "English (US)",
volume = "248",
pages = "829--836",
journal = "Biochemical Journal",
issn = "0264-6021",
publisher = "Portland Press Ltd.",
number = "3",

}

TY - JOUR

T1 - Phospholipid environment alters hormone-sensitivity of the purified insulin receptor kinase.

AU - Lewis, R. E.

AU - Czech, M. P.

PY - 1987/12/15

Y1 - 1987/12/15

N2 - Insulin receptor kinase, affinity-purified by adsorption and elution from immobilized insulin, is stimulated 2-3-fold by insulin in detergent solution. Reconstitution of the receptor kinase into leaky vesicles containing phosphatidylcholine and phosphatidylethanolamine (1:1, w/w) by detergent removal on Sephadex G-50 results in the complete loss of receptor kinase sensitivity to activation by insulin. Insulin receptors in these vesicles also exhibit an increase in their apparent affinity for 125I-insulin (Kd = 0.12 nM versus 0.76 nM). Inclusion of 8.3-16.7% phosphatidylserine into the reconstituted vesicles restores 40-50% of the insulin-sensitivity to the receptor kinase. An elevated apparent affinity for 125I-insulin of insulin receptors in vesicles containing phosphatidylcholine and phosphatidylethanolamine is also restored to the value observed in detergent solution by the inclusion of phosphatidylserine in the reconstituted system. The effect of phosphatidylserine on insulin receptor kinase appears specific, because cholesterol, phosphatidylinositol and phosphatidic acid are all unable to restore insulin-sensitivity to the receptor kinase. Autophosphorylation sites on the insulin receptor as analysed by h.p.l.c. of tryptic 32P-labelled receptor phosphopeptides are not different for insulin receptors autophosphorylated in detergent solution or for the reconstituted vesicles in the presence or absence of phosphatidylserine. These data indicate that the phospholipid environment of insulin receptors can modulate its binding and kinase activity, and phosphatidylserine acts to restore insulin-sensitivity to the receptor kinase incorporated into phosphatidylcholine/phosphatidylethanolamine vesicles.

AB - Insulin receptor kinase, affinity-purified by adsorption and elution from immobilized insulin, is stimulated 2-3-fold by insulin in detergent solution. Reconstitution of the receptor kinase into leaky vesicles containing phosphatidylcholine and phosphatidylethanolamine (1:1, w/w) by detergent removal on Sephadex G-50 results in the complete loss of receptor kinase sensitivity to activation by insulin. Insulin receptors in these vesicles also exhibit an increase in their apparent affinity for 125I-insulin (Kd = 0.12 nM versus 0.76 nM). Inclusion of 8.3-16.7% phosphatidylserine into the reconstituted vesicles restores 40-50% of the insulin-sensitivity to the receptor kinase. An elevated apparent affinity for 125I-insulin of insulin receptors in vesicles containing phosphatidylcholine and phosphatidylethanolamine is also restored to the value observed in detergent solution by the inclusion of phosphatidylserine in the reconstituted system. The effect of phosphatidylserine on insulin receptor kinase appears specific, because cholesterol, phosphatidylinositol and phosphatidic acid are all unable to restore insulin-sensitivity to the receptor kinase. Autophosphorylation sites on the insulin receptor as analysed by h.p.l.c. of tryptic 32P-labelled receptor phosphopeptides are not different for insulin receptors autophosphorylated in detergent solution or for the reconstituted vesicles in the presence or absence of phosphatidylserine. These data indicate that the phospholipid environment of insulin receptors can modulate its binding and kinase activity, and phosphatidylserine acts to restore insulin-sensitivity to the receptor kinase incorporated into phosphatidylcholine/phosphatidylethanolamine vesicles.

UR - http://www.scopus.com/inward/record.url?scp=0023657088&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0023657088&partnerID=8YFLogxK

U2 - 10.1042/bj2480829

DO - 10.1042/bj2480829

M3 - Article

C2 - 2829843

AN - SCOPUS:0023657088

VL - 248

SP - 829

EP - 836

JO - Biochemical Journal

JF - Biochemical Journal

SN - 0264-6021

IS - 3

ER -