Pharmacodynamic activity and efficacy of linezolid in a rat model of pneumococcal pneumonia

Martha J. Gentry-Nielsen, Keith M. Olsen, Laurel C. Preheim

Research output: Contribution to journalArticle

41 Citations (Scopus)

Abstract

Linezolid is a new oxazolidinone antibiotic with potent activity against gram-positive bacteria, including Streptococcus pneumoniae. The pharmacodynamic activity and in vivo efficacy of linezolid were compared to those of ceftriaxone in an immunocompetent rat model of pneumococcal pneumonia. Rats infected intratracheally with 8 × 107 CFU of a penicillin-sensitive (MIC, 0.032 μg/ml) strain of S. pneumoniae were treated for 5 days beginning 18 h postinfection. Groups of rats were sham treated with oral phosphate-buffered saline or received oral liquid linezolid at 25 or 50 mg/kg of body weight twice a day (b.i.d.) or subcutaneous ceftriaxone at 100 mg/kg once daily. Mortality was monitored for 10 days postinfection; blood culturing was performed on day 1 (pretreatment) and on days 3, 5, and 10 postinfection for the determination of bacteremia. Serum also was collected for the determination of pharmacokinetic and pharmacodynamic parameters at 30 min and at 3, 5, and 12 h (linezolid) or 3, 5, and 24 h (ceftriaxone) postdose. The cumulative mortality rates were 100% for the sham-treated group, 58.3% for the low-dose linezolid group, 8.3% for the high-dose linezolid group, and 0% for the ceftriaxone group. Rats in each of the antibiotic treatment groups had significantly fewer bacteria (P < 0.00001) in their bronchoalveolar lavage fluid (BALF) on day 3 postinfection than sham-treated rats. There also were significantly fewer organisms in the BALF of rats treated with ceftriaxone than in the BALF of rats treated with either dose of linezolid. Oral linezolid at 50 mg/kg b.i.d. therefore was as effective as ceftriaxone in experimental pneumococcal pneumonia, whereas the 25-mg/kg b.i.d. dose was significantly less effective. All pharmacodynamic parameters reflected efficacy and were significantly different for the two dosage regimens of linezolid (P < 0.01). However, the free-fraction pharmacodynamic parameters predictive of outcome were a value of >39% for the percentage of time in the experimental dosing interval during which the linezolid concentration exceeded the MIC and a value of >147 for the ratio of the area under the serum concentrationtime curve to the MIC.

Original languageEnglish (US)
Pages (from-to)1345-1351
Number of pages7
JournalAntimicrobial Agents and Chemotherapy
Volume46
Issue number5
DOIs
StatePublished - May 2 2002

Fingerprint

Linezolid
Pneumococcal Pneumonia
Ceftriaxone
Streptococcus pneumoniae
Oxazolidinones
Anti-Bacterial Agents
Mortality
Gram-Positive Bacteria
Bacteremia
Serum
Penicillins

ASJC Scopus subject areas

  • Pharmacology
  • Pharmacology (medical)
  • Infectious Diseases

Cite this

Pharmacodynamic activity and efficacy of linezolid in a rat model of pneumococcal pneumonia. / Gentry-Nielsen, Martha J.; Olsen, Keith M.; Preheim, Laurel C.

In: Antimicrobial Agents and Chemotherapy, Vol. 46, No. 5, 02.05.2002, p. 1345-1351.

Research output: Contribution to journalArticle

Gentry-Nielsen, Martha J. ; Olsen, Keith M. ; Preheim, Laurel C. / Pharmacodynamic activity and efficacy of linezolid in a rat model of pneumococcal pneumonia. In: Antimicrobial Agents and Chemotherapy. 2002 ; Vol. 46, No. 5. pp. 1345-1351.
@article{af62fef7397745d18f5167a3c8866341,
title = "Pharmacodynamic activity and efficacy of linezolid in a rat model of pneumococcal pneumonia",
abstract = "Linezolid is a new oxazolidinone antibiotic with potent activity against gram-positive bacteria, including Streptococcus pneumoniae. The pharmacodynamic activity and in vivo efficacy of linezolid were compared to those of ceftriaxone in an immunocompetent rat model of pneumococcal pneumonia. Rats infected intratracheally with 8 × 107 CFU of a penicillin-sensitive (MIC, 0.032 μg/ml) strain of S. pneumoniae were treated for 5 days beginning 18 h postinfection. Groups of rats were sham treated with oral phosphate-buffered saline or received oral liquid linezolid at 25 or 50 mg/kg of body weight twice a day (b.i.d.) or subcutaneous ceftriaxone at 100 mg/kg once daily. Mortality was monitored for 10 days postinfection; blood culturing was performed on day 1 (pretreatment) and on days 3, 5, and 10 postinfection for the determination of bacteremia. Serum also was collected for the determination of pharmacokinetic and pharmacodynamic parameters at 30 min and at 3, 5, and 12 h (linezolid) or 3, 5, and 24 h (ceftriaxone) postdose. The cumulative mortality rates were 100{\%} for the sham-treated group, 58.3{\%} for the low-dose linezolid group, 8.3{\%} for the high-dose linezolid group, and 0{\%} for the ceftriaxone group. Rats in each of the antibiotic treatment groups had significantly fewer bacteria (P < 0.00001) in their bronchoalveolar lavage fluid (BALF) on day 3 postinfection than sham-treated rats. There also were significantly fewer organisms in the BALF of rats treated with ceftriaxone than in the BALF of rats treated with either dose of linezolid. Oral linezolid at 50 mg/kg b.i.d. therefore was as effective as ceftriaxone in experimental pneumococcal pneumonia, whereas the 25-mg/kg b.i.d. dose was significantly less effective. All pharmacodynamic parameters reflected efficacy and were significantly different for the two dosage regimens of linezolid (P < 0.01). However, the free-fraction pharmacodynamic parameters predictive of outcome were a value of >39{\%} for the percentage of time in the experimental dosing interval during which the linezolid concentration exceeded the MIC and a value of >147 for the ratio of the area under the serum concentrationtime curve to the MIC.",
author = "Gentry-Nielsen, {Martha J.} and Olsen, {Keith M.} and Preheim, {Laurel C.}",
year = "2002",
month = "5",
day = "2",
doi = "10.1128/AAC.46.5.1345-1351.2002",
language = "English (US)",
volume = "46",
pages = "1345--1351",
journal = "Antimicrobial Agents and Chemotherapy",
issn = "0066-4804",
publisher = "American Society for Microbiology",
number = "5",

}

TY - JOUR

T1 - Pharmacodynamic activity and efficacy of linezolid in a rat model of pneumococcal pneumonia

AU - Gentry-Nielsen, Martha J.

AU - Olsen, Keith M.

AU - Preheim, Laurel C.

PY - 2002/5/2

Y1 - 2002/5/2

N2 - Linezolid is a new oxazolidinone antibiotic with potent activity against gram-positive bacteria, including Streptococcus pneumoniae. The pharmacodynamic activity and in vivo efficacy of linezolid were compared to those of ceftriaxone in an immunocompetent rat model of pneumococcal pneumonia. Rats infected intratracheally with 8 × 107 CFU of a penicillin-sensitive (MIC, 0.032 μg/ml) strain of S. pneumoniae were treated for 5 days beginning 18 h postinfection. Groups of rats were sham treated with oral phosphate-buffered saline or received oral liquid linezolid at 25 or 50 mg/kg of body weight twice a day (b.i.d.) or subcutaneous ceftriaxone at 100 mg/kg once daily. Mortality was monitored for 10 days postinfection; blood culturing was performed on day 1 (pretreatment) and on days 3, 5, and 10 postinfection for the determination of bacteremia. Serum also was collected for the determination of pharmacokinetic and pharmacodynamic parameters at 30 min and at 3, 5, and 12 h (linezolid) or 3, 5, and 24 h (ceftriaxone) postdose. The cumulative mortality rates were 100% for the sham-treated group, 58.3% for the low-dose linezolid group, 8.3% for the high-dose linezolid group, and 0% for the ceftriaxone group. Rats in each of the antibiotic treatment groups had significantly fewer bacteria (P < 0.00001) in their bronchoalveolar lavage fluid (BALF) on day 3 postinfection than sham-treated rats. There also were significantly fewer organisms in the BALF of rats treated with ceftriaxone than in the BALF of rats treated with either dose of linezolid. Oral linezolid at 50 mg/kg b.i.d. therefore was as effective as ceftriaxone in experimental pneumococcal pneumonia, whereas the 25-mg/kg b.i.d. dose was significantly less effective. All pharmacodynamic parameters reflected efficacy and were significantly different for the two dosage regimens of linezolid (P < 0.01). However, the free-fraction pharmacodynamic parameters predictive of outcome were a value of >39% for the percentage of time in the experimental dosing interval during which the linezolid concentration exceeded the MIC and a value of >147 for the ratio of the area under the serum concentrationtime curve to the MIC.

AB - Linezolid is a new oxazolidinone antibiotic with potent activity against gram-positive bacteria, including Streptococcus pneumoniae. The pharmacodynamic activity and in vivo efficacy of linezolid were compared to those of ceftriaxone in an immunocompetent rat model of pneumococcal pneumonia. Rats infected intratracheally with 8 × 107 CFU of a penicillin-sensitive (MIC, 0.032 μg/ml) strain of S. pneumoniae were treated for 5 days beginning 18 h postinfection. Groups of rats were sham treated with oral phosphate-buffered saline or received oral liquid linezolid at 25 or 50 mg/kg of body weight twice a day (b.i.d.) or subcutaneous ceftriaxone at 100 mg/kg once daily. Mortality was monitored for 10 days postinfection; blood culturing was performed on day 1 (pretreatment) and on days 3, 5, and 10 postinfection for the determination of bacteremia. Serum also was collected for the determination of pharmacokinetic and pharmacodynamic parameters at 30 min and at 3, 5, and 12 h (linezolid) or 3, 5, and 24 h (ceftriaxone) postdose. The cumulative mortality rates were 100% for the sham-treated group, 58.3% for the low-dose linezolid group, 8.3% for the high-dose linezolid group, and 0% for the ceftriaxone group. Rats in each of the antibiotic treatment groups had significantly fewer bacteria (P < 0.00001) in their bronchoalveolar lavage fluid (BALF) on day 3 postinfection than sham-treated rats. There also were significantly fewer organisms in the BALF of rats treated with ceftriaxone than in the BALF of rats treated with either dose of linezolid. Oral linezolid at 50 mg/kg b.i.d. therefore was as effective as ceftriaxone in experimental pneumococcal pneumonia, whereas the 25-mg/kg b.i.d. dose was significantly less effective. All pharmacodynamic parameters reflected efficacy and were significantly different for the two dosage regimens of linezolid (P < 0.01). However, the free-fraction pharmacodynamic parameters predictive of outcome were a value of >39% for the percentage of time in the experimental dosing interval during which the linezolid concentration exceeded the MIC and a value of >147 for the ratio of the area under the serum concentrationtime curve to the MIC.

UR - http://www.scopus.com/inward/record.url?scp=0036239725&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0036239725&partnerID=8YFLogxK

U2 - 10.1128/AAC.46.5.1345-1351.2002

DO - 10.1128/AAC.46.5.1345-1351.2002

M3 - Article

C2 - 11959567

AN - SCOPUS:0036239725

VL - 46

SP - 1345

EP - 1351

JO - Antimicrobial Agents and Chemotherapy

JF - Antimicrobial Agents and Chemotherapy

SN - 0066-4804

IS - 5

ER -