Periosteal fiber transection during periosteal procedures is crucial to accelerate growth in the rabbit model

Matthew A. Halanski, Tugrul Yildirim, Rajeev Chaudhary, Matthew S. Chin, Ellen Leiferman

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Background Disruption of the periosteum has been used to explain overgrowth after long bone fractures. Clinically, various periosteal procedures have been reported to accelerate growth with varied results. Differences between procedures and study populations, in these prior studies, make drawing conclusions regarding their effectiveness difficult. Questions/purposes The purpose of this study was to (1) determine if all reported periosteal procedures accelerate growth and increase the length of bones; (2) study the relative duration of these growth-accelerating effects at two time points; and (3) identify the periosteal procedure that results in the most growth. Methods Periosteal stripping (N = 8), periosteal transection (N = 8), periosteal resection (N = 8), (and) full periosteal release (N = 8) were performed on the tibiae of skeletally immature rabbits. Tibiae were collected 2 weeks postoperatively. The tibiae of additional cohorts of periosteal transection (N = 8), periosteal resection (N = 8), full periosteal release (N = 8), and repetitive periosteal transection (N = 8) were collected 8 weeks postoperatively. The contralateral tibiae served as an operative sham control in all cohorts. Fluorochrome bone labeling was used to measure growth rates, whereas high-resolution Faxitron imaging was performed to measure tibial lengths. Comparisons were then made between (1) experimental and sham controls; and (2) different procedures. Eight additional nonsurgical animals were included as age-matched controls. Results Growth (in microns) was accelerated at the proximal tibial physis on the tibia undergoing the periosteal surgical procedures versus the contralateral control limb after the transection (411 ± 27 versus 347 ± 18, p < 0.001 [mean ± SD]), resection (401 ± 33 versus 337 ± 31, p < 0.001), and full periosteal release (362 ± 45 versus 307 ± 33, p < 0.001), 2 weeks after the index procedure. Conversely, the periosteal stripping cohort trended toward less growth (344 ± 35) than the controls (356 ± 25; p = 0.08). No differences were found between limbs in the nonoperative controls. Tibial lengths for the experimental tibiae were longer at 2 weeks in the transection (1.6 ± 0.4 mm, p < 0.001), resection (1.6 ± 0.9 mm, p = 0.03), and full periosteal release (1.7 ± 0.5 mm, p < 0.001), whereas negligible differences were found between the tibiae of the nonoperative controls (0.13 ± 0.7 mm, p = 0.8) and stripping cohorts (0.10 ± 0.6 mm, p = 0.7). At 8 weeks, growth acceleration ceased at the proximal tibial physes in the transection cohort (174 ± 11 versus 176 ± 21, p = 0.8), and the control limbs actually grew faster than the experimental limbs after resection (194 ± 24 versus 178 ± 23, p = 0.02) and full periosteal release (193 ± 16 versus 175 ± 19, p < 0.01) cohorts. Growth rates were increased over control limbs, only in the repetitive transection cohort (190 ± 30 versus 169 ± 19, p = 0.01) at 8 weeks. Tibial lengths for the experimental tibiae remained longer at 8 weeks in the transection (1.4 ± 0.70 mm, p < 0.001), resection (2.2 ± 0.82 mm, p < 0.001), full periosteal release (1.6 ± 0.42 mm, p < 0.001), and repetitive periosteal transection (3.3 ± 1.1 mm, p < 0.001), whereas negligible differences were found between the tibiae of the nonoperative controls (– 0.08 ± 0.58 mm, p = 0.8). Comparing the procedures at 2 weeks postoperatively, no differences were found in tibial lengths among the transection (2.1% ± 0.5% increase), resection (2.1% ± 1.1% increase), and full periosteal release (2.1% ± 0.6 %); however, all three demonstrated greater increased growth when compared with the stripping cohort (– 0.10% ± 0.7%; p < 0.05). At 8 weeks no differences could be found between increased tibial lengths among the transection (1.5% ± 0.7%), resection (2.3% ± 0.9%), and full periosteal release (1.7% ± 0.4%). The repetitive transection produced the greatest over length increase (3.5% ± 1%), and this was greater than the acceleration generated by the single resection (p < 0.001) or the full periosteal release (p = 0.001). All four demonstrated an increase greater than the nonoperative control (0.09% ± 0.6%; p < 0.05). Conclusions Transection of the longitudinally oriented periosteal fibers appears critical to accelerate growth in a rabbit model. Clinical Relevance These findings in an animal model support previous claims that limb overgrowth occurs as the result of periosteal disruption. Based on these findings in rabbits, we believe that less invasive procedures like periosteal transection are a promising avenue to explore in humans; clinical studies should seek to determine whether it is equally effective as more invasive procedures and its role as an adjunct to guided growth or distraction osteogenesis.

Original languageEnglish (US)
Pages (from-to)1028-1037
Number of pages10
JournalClinical Orthopaedics and Related Research
Volume474
Issue number4
DOIs
StatePublished - Dec 15 2016

Fingerprint

Tibia
Rabbits
Growth
Extremities
Distraction Osteogenesis
Bone and Bones
Periosteum
Bone Fractures
Fluorescent Dyes
Animal Models
Population

ASJC Scopus subject areas

  • Surgery
  • Orthopedics and Sports Medicine

Cite this

Periosteal fiber transection during periosteal procedures is crucial to accelerate growth in the rabbit model. / Halanski, Matthew A.; Yildirim, Tugrul; Chaudhary, Rajeev; Chin, Matthew S.; Leiferman, Ellen.

In: Clinical Orthopaedics and Related Research, Vol. 474, No. 4, 15.12.2016, p. 1028-1037.

Research output: Contribution to journalArticle

Halanski, Matthew A. ; Yildirim, Tugrul ; Chaudhary, Rajeev ; Chin, Matthew S. ; Leiferman, Ellen. / Periosteal fiber transection during periosteal procedures is crucial to accelerate growth in the rabbit model. In: Clinical Orthopaedics and Related Research. 2016 ; Vol. 474, No. 4. pp. 1028-1037.
@article{6adf6b1efe9b43949012a67f29bf804b,
title = "Periosteal fiber transection during periosteal procedures is crucial to accelerate growth in the rabbit model",
abstract = "Background Disruption of the periosteum has been used to explain overgrowth after long bone fractures. Clinically, various periosteal procedures have been reported to accelerate growth with varied results. Differences between procedures and study populations, in these prior studies, make drawing conclusions regarding their effectiveness difficult. Questions/purposes The purpose of this study was to (1) determine if all reported periosteal procedures accelerate growth and increase the length of bones; (2) study the relative duration of these growth-accelerating effects at two time points; and (3) identify the periosteal procedure that results in the most growth. Methods Periosteal stripping (N = 8), periosteal transection (N = 8), periosteal resection (N = 8), (and) full periosteal release (N = 8) were performed on the tibiae of skeletally immature rabbits. Tibiae were collected 2 weeks postoperatively. The tibiae of additional cohorts of periosteal transection (N = 8), periosteal resection (N = 8), full periosteal release (N = 8), and repetitive periosteal transection (N = 8) were collected 8 weeks postoperatively. The contralateral tibiae served as an operative sham control in all cohorts. Fluorochrome bone labeling was used to measure growth rates, whereas high-resolution Faxitron imaging was performed to measure tibial lengths. Comparisons were then made between (1) experimental and sham controls; and (2) different procedures. Eight additional nonsurgical animals were included as age-matched controls. Results Growth (in microns) was accelerated at the proximal tibial physis on the tibia undergoing the periosteal surgical procedures versus the contralateral control limb after the transection (411 ± 27 versus 347 ± 18, p < 0.001 [mean ± SD]), resection (401 ± 33 versus 337 ± 31, p < 0.001), and full periosteal release (362 ± 45 versus 307 ± 33, p < 0.001), 2 weeks after the index procedure. Conversely, the periosteal stripping cohort trended toward less growth (344 ± 35) than the controls (356 ± 25; p = 0.08). No differences were found between limbs in the nonoperative controls. Tibial lengths for the experimental tibiae were longer at 2 weeks in the transection (1.6 ± 0.4 mm, p < 0.001), resection (1.6 ± 0.9 mm, p = 0.03), and full periosteal release (1.7 ± 0.5 mm, p < 0.001), whereas negligible differences were found between the tibiae of the nonoperative controls (0.13 ± 0.7 mm, p = 0.8) and stripping cohorts (0.10 ± 0.6 mm, p = 0.7). At 8 weeks, growth acceleration ceased at the proximal tibial physes in the transection cohort (174 ± 11 versus 176 ± 21, p = 0.8), and the control limbs actually grew faster than the experimental limbs after resection (194 ± 24 versus 178 ± 23, p = 0.02) and full periosteal release (193 ± 16 versus 175 ± 19, p < 0.01) cohorts. Growth rates were increased over control limbs, only in the repetitive transection cohort (190 ± 30 versus 169 ± 19, p = 0.01) at 8 weeks. Tibial lengths for the experimental tibiae remained longer at 8 weeks in the transection (1.4 ± 0.70 mm, p < 0.001), resection (2.2 ± 0.82 mm, p < 0.001), full periosteal release (1.6 ± 0.42 mm, p < 0.001), and repetitive periosteal transection (3.3 ± 1.1 mm, p < 0.001), whereas negligible differences were found between the tibiae of the nonoperative controls (– 0.08 ± 0.58 mm, p = 0.8). Comparing the procedures at 2 weeks postoperatively, no differences were found in tibial lengths among the transection (2.1{\%} ± 0.5{\%} increase), resection (2.1{\%} ± 1.1{\%} increase), and full periosteal release (2.1{\%} ± 0.6 {\%}); however, all three demonstrated greater increased growth when compared with the stripping cohort (– 0.10{\%} ± 0.7{\%}; p < 0.05). At 8 weeks no differences could be found between increased tibial lengths among the transection (1.5{\%} ± 0.7{\%}), resection (2.3{\%} ± 0.9{\%}), and full periosteal release (1.7{\%} ± 0.4{\%}). The repetitive transection produced the greatest over length increase (3.5{\%} ± 1{\%}), and this was greater than the acceleration generated by the single resection (p < 0.001) or the full periosteal release (p = 0.001). All four demonstrated an increase greater than the nonoperative control (0.09{\%} ± 0.6{\%}; p < 0.05). Conclusions Transection of the longitudinally oriented periosteal fibers appears critical to accelerate growth in a rabbit model. Clinical Relevance These findings in an animal model support previous claims that limb overgrowth occurs as the result of periosteal disruption. Based on these findings in rabbits, we believe that less invasive procedures like periosteal transection are a promising avenue to explore in humans; clinical studies should seek to determine whether it is equally effective as more invasive procedures and its role as an adjunct to guided growth or distraction osteogenesis.",
author = "Halanski, {Matthew A.} and Tugrul Yildirim and Rajeev Chaudhary and Chin, {Matthew S.} and Ellen Leiferman",
year = "2016",
month = "12",
day = "15",
doi = "10.1007/s11999-015-4646-6",
language = "English (US)",
volume = "474",
pages = "1028--1037",
journal = "Clinical Orthopaedics and Related Research",
issn = "0009-921X",
publisher = "Springer New York",
number = "4",

}

TY - JOUR

T1 - Periosteal fiber transection during periosteal procedures is crucial to accelerate growth in the rabbit model

AU - Halanski, Matthew A.

AU - Yildirim, Tugrul

AU - Chaudhary, Rajeev

AU - Chin, Matthew S.

AU - Leiferman, Ellen

PY - 2016/12/15

Y1 - 2016/12/15

N2 - Background Disruption of the periosteum has been used to explain overgrowth after long bone fractures. Clinically, various periosteal procedures have been reported to accelerate growth with varied results. Differences between procedures and study populations, in these prior studies, make drawing conclusions regarding their effectiveness difficult. Questions/purposes The purpose of this study was to (1) determine if all reported periosteal procedures accelerate growth and increase the length of bones; (2) study the relative duration of these growth-accelerating effects at two time points; and (3) identify the periosteal procedure that results in the most growth. Methods Periosteal stripping (N = 8), periosteal transection (N = 8), periosteal resection (N = 8), (and) full periosteal release (N = 8) were performed on the tibiae of skeletally immature rabbits. Tibiae were collected 2 weeks postoperatively. The tibiae of additional cohorts of periosteal transection (N = 8), periosteal resection (N = 8), full periosteal release (N = 8), and repetitive periosteal transection (N = 8) were collected 8 weeks postoperatively. The contralateral tibiae served as an operative sham control in all cohorts. Fluorochrome bone labeling was used to measure growth rates, whereas high-resolution Faxitron imaging was performed to measure tibial lengths. Comparisons were then made between (1) experimental and sham controls; and (2) different procedures. Eight additional nonsurgical animals were included as age-matched controls. Results Growth (in microns) was accelerated at the proximal tibial physis on the tibia undergoing the periosteal surgical procedures versus the contralateral control limb after the transection (411 ± 27 versus 347 ± 18, p < 0.001 [mean ± SD]), resection (401 ± 33 versus 337 ± 31, p < 0.001), and full periosteal release (362 ± 45 versus 307 ± 33, p < 0.001), 2 weeks after the index procedure. Conversely, the periosteal stripping cohort trended toward less growth (344 ± 35) than the controls (356 ± 25; p = 0.08). No differences were found between limbs in the nonoperative controls. Tibial lengths for the experimental tibiae were longer at 2 weeks in the transection (1.6 ± 0.4 mm, p < 0.001), resection (1.6 ± 0.9 mm, p = 0.03), and full periosteal release (1.7 ± 0.5 mm, p < 0.001), whereas negligible differences were found between the tibiae of the nonoperative controls (0.13 ± 0.7 mm, p = 0.8) and stripping cohorts (0.10 ± 0.6 mm, p = 0.7). At 8 weeks, growth acceleration ceased at the proximal tibial physes in the transection cohort (174 ± 11 versus 176 ± 21, p = 0.8), and the control limbs actually grew faster than the experimental limbs after resection (194 ± 24 versus 178 ± 23, p = 0.02) and full periosteal release (193 ± 16 versus 175 ± 19, p < 0.01) cohorts. Growth rates were increased over control limbs, only in the repetitive transection cohort (190 ± 30 versus 169 ± 19, p = 0.01) at 8 weeks. Tibial lengths for the experimental tibiae remained longer at 8 weeks in the transection (1.4 ± 0.70 mm, p < 0.001), resection (2.2 ± 0.82 mm, p < 0.001), full periosteal release (1.6 ± 0.42 mm, p < 0.001), and repetitive periosteal transection (3.3 ± 1.1 mm, p < 0.001), whereas negligible differences were found between the tibiae of the nonoperative controls (– 0.08 ± 0.58 mm, p = 0.8). Comparing the procedures at 2 weeks postoperatively, no differences were found in tibial lengths among the transection (2.1% ± 0.5% increase), resection (2.1% ± 1.1% increase), and full periosteal release (2.1% ± 0.6 %); however, all three demonstrated greater increased growth when compared with the stripping cohort (– 0.10% ± 0.7%; p < 0.05). At 8 weeks no differences could be found between increased tibial lengths among the transection (1.5% ± 0.7%), resection (2.3% ± 0.9%), and full periosteal release (1.7% ± 0.4%). The repetitive transection produced the greatest over length increase (3.5% ± 1%), and this was greater than the acceleration generated by the single resection (p < 0.001) or the full periosteal release (p = 0.001). All four demonstrated an increase greater than the nonoperative control (0.09% ± 0.6%; p < 0.05). Conclusions Transection of the longitudinally oriented periosteal fibers appears critical to accelerate growth in a rabbit model. Clinical Relevance These findings in an animal model support previous claims that limb overgrowth occurs as the result of periosteal disruption. Based on these findings in rabbits, we believe that less invasive procedures like periosteal transection are a promising avenue to explore in humans; clinical studies should seek to determine whether it is equally effective as more invasive procedures and its role as an adjunct to guided growth or distraction osteogenesis.

AB - Background Disruption of the periosteum has been used to explain overgrowth after long bone fractures. Clinically, various periosteal procedures have been reported to accelerate growth with varied results. Differences between procedures and study populations, in these prior studies, make drawing conclusions regarding their effectiveness difficult. Questions/purposes The purpose of this study was to (1) determine if all reported periosteal procedures accelerate growth and increase the length of bones; (2) study the relative duration of these growth-accelerating effects at two time points; and (3) identify the periosteal procedure that results in the most growth. Methods Periosteal stripping (N = 8), periosteal transection (N = 8), periosteal resection (N = 8), (and) full periosteal release (N = 8) were performed on the tibiae of skeletally immature rabbits. Tibiae were collected 2 weeks postoperatively. The tibiae of additional cohorts of periosteal transection (N = 8), periosteal resection (N = 8), full periosteal release (N = 8), and repetitive periosteal transection (N = 8) were collected 8 weeks postoperatively. The contralateral tibiae served as an operative sham control in all cohorts. Fluorochrome bone labeling was used to measure growth rates, whereas high-resolution Faxitron imaging was performed to measure tibial lengths. Comparisons were then made between (1) experimental and sham controls; and (2) different procedures. Eight additional nonsurgical animals were included as age-matched controls. Results Growth (in microns) was accelerated at the proximal tibial physis on the tibia undergoing the periosteal surgical procedures versus the contralateral control limb after the transection (411 ± 27 versus 347 ± 18, p < 0.001 [mean ± SD]), resection (401 ± 33 versus 337 ± 31, p < 0.001), and full periosteal release (362 ± 45 versus 307 ± 33, p < 0.001), 2 weeks after the index procedure. Conversely, the periosteal stripping cohort trended toward less growth (344 ± 35) than the controls (356 ± 25; p = 0.08). No differences were found between limbs in the nonoperative controls. Tibial lengths for the experimental tibiae were longer at 2 weeks in the transection (1.6 ± 0.4 mm, p < 0.001), resection (1.6 ± 0.9 mm, p = 0.03), and full periosteal release (1.7 ± 0.5 mm, p < 0.001), whereas negligible differences were found between the tibiae of the nonoperative controls (0.13 ± 0.7 mm, p = 0.8) and stripping cohorts (0.10 ± 0.6 mm, p = 0.7). At 8 weeks, growth acceleration ceased at the proximal tibial physes in the transection cohort (174 ± 11 versus 176 ± 21, p = 0.8), and the control limbs actually grew faster than the experimental limbs after resection (194 ± 24 versus 178 ± 23, p = 0.02) and full periosteal release (193 ± 16 versus 175 ± 19, p < 0.01) cohorts. Growth rates were increased over control limbs, only in the repetitive transection cohort (190 ± 30 versus 169 ± 19, p = 0.01) at 8 weeks. Tibial lengths for the experimental tibiae remained longer at 8 weeks in the transection (1.4 ± 0.70 mm, p < 0.001), resection (2.2 ± 0.82 mm, p < 0.001), full periosteal release (1.6 ± 0.42 mm, p < 0.001), and repetitive periosteal transection (3.3 ± 1.1 mm, p < 0.001), whereas negligible differences were found between the tibiae of the nonoperative controls (– 0.08 ± 0.58 mm, p = 0.8). Comparing the procedures at 2 weeks postoperatively, no differences were found in tibial lengths among the transection (2.1% ± 0.5% increase), resection (2.1% ± 1.1% increase), and full periosteal release (2.1% ± 0.6 %); however, all three demonstrated greater increased growth when compared with the stripping cohort (– 0.10% ± 0.7%; p < 0.05). At 8 weeks no differences could be found between increased tibial lengths among the transection (1.5% ± 0.7%), resection (2.3% ± 0.9%), and full periosteal release (1.7% ± 0.4%). The repetitive transection produced the greatest over length increase (3.5% ± 1%), and this was greater than the acceleration generated by the single resection (p < 0.001) or the full periosteal release (p = 0.001). All four demonstrated an increase greater than the nonoperative control (0.09% ± 0.6%; p < 0.05). Conclusions Transection of the longitudinally oriented periosteal fibers appears critical to accelerate growth in a rabbit model. Clinical Relevance These findings in an animal model support previous claims that limb overgrowth occurs as the result of periosteal disruption. Based on these findings in rabbits, we believe that less invasive procedures like periosteal transection are a promising avenue to explore in humans; clinical studies should seek to determine whether it is equally effective as more invasive procedures and its role as an adjunct to guided growth or distraction osteogenesis.

UR - http://www.scopus.com/inward/record.url?scp=84949989645&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84949989645&partnerID=8YFLogxK

U2 - 10.1007/s11999-015-4646-6

DO - 10.1007/s11999-015-4646-6

M3 - Article

C2 - 26671040

AN - SCOPUS:84949989645

VL - 474

SP - 1028

EP - 1037

JO - Clinical Orthopaedics and Related Research

JF - Clinical Orthopaedics and Related Research

SN - 0009-921X

IS - 4

ER -