Oxygenase coordination is required for morphological transition and the host-fungus interaction of aspergillus flavus

Sigal Horowitz Brown, James B. Scott, Jeyanthi Bhaheetharan, William C. Sharpee, Lane Milde, Richard A Wilson, Nancy P. Keller

Research output: Contribution to journalArticle

51 Citations (Scopus)

Abstract

Oxylipins, a class of oxygenase-derived unsaturated fatty acids, are important signal molecules in many biological systems. Recent characterization of an Aspergillus flavus lipoxygenase gene, lox, revealed its importance in maintaining a density-dependent morphology switch from sclerotia to conidia as population density increased. Here, we present evidence for the involvement of four more oxylipingenerating dioxygenases (PpoA, PpoB, PpoC, and PpoD) in A. flavus density-dependent phenomena and the effects of loss of these genes on aflatoxin production and seed colonization. Although several single mutants showed alterations in the sclerotia-to-conidia switch, the major effect was observed in a strain downregulated for all five oxygenases (invert repeat transgene [IRT] strain IRT4 = ppoA, ppoB, ppoC, ppoD, and lox). In strain 1RT4, sclerotia production was increased up to 500-fold whereas conidiation was decreased down to 100-fold and the strain was unable to switch into conidial production. Aflatoxin (AF) production for all mutant strains and the wild type was greatest at low population densities and absent in high populations except for strain IRT4, which consistently produced high levels of the mycotoxin. Growth on host seed by both IRT4 and IRT2 (downregulated in ppoA, ppoB, and ppoD) was marked by decreased conidial but increased AF production. We propose that A. flavus oxygenases and the oxylipins they produce act in a highly interdependent network with some redundancy of biological function. These studies provide substantial evidence for oxylipin-based mechanisms in governing fungus-seed interactions and in regulating a coordinated quorum-sensing mechanism in A. flavus.

Original languageEnglish (US)
Pages (from-to)882-894
Number of pages13
JournalMolecular Plant-Microbe Interactions
Volume22
Issue number7
DOIs
StatePublished - Jul 1 2009

Fingerprint

Aspergillus flavus
Oxygenases
Oxylipins
oxygenases
Aflatoxins
Fungi
oxylipins
Seeds
fungi
Fungal Spores
sclerotia
Population Density
aflatoxins
Down-Regulation
Dioxygenases
Quorum Sensing
conidia
Lipoxygenase
Mycotoxins
population density

ASJC Scopus subject areas

  • Physiology
  • Agronomy and Crop Science

Cite this

Oxygenase coordination is required for morphological transition and the host-fungus interaction of aspergillus flavus. / Brown, Sigal Horowitz; Scott, James B.; Bhaheetharan, Jeyanthi; Sharpee, William C.; Milde, Lane; Wilson, Richard A; Keller, Nancy P.

In: Molecular Plant-Microbe Interactions, Vol. 22, No. 7, 01.07.2009, p. 882-894.

Research output: Contribution to journalArticle

Brown, Sigal Horowitz ; Scott, James B. ; Bhaheetharan, Jeyanthi ; Sharpee, William C. ; Milde, Lane ; Wilson, Richard A ; Keller, Nancy P. / Oxygenase coordination is required for morphological transition and the host-fungus interaction of aspergillus flavus. In: Molecular Plant-Microbe Interactions. 2009 ; Vol. 22, No. 7. pp. 882-894.
@article{d5437fbe59ad4c4d9e6698743bbe8f3b,
title = "Oxygenase coordination is required for morphological transition and the host-fungus interaction of aspergillus flavus",
abstract = "Oxylipins, a class of oxygenase-derived unsaturated fatty acids, are important signal molecules in many biological systems. Recent characterization of an Aspergillus flavus lipoxygenase gene, lox, revealed its importance in maintaining a density-dependent morphology switch from sclerotia to conidia as population density increased. Here, we present evidence for the involvement of four more oxylipingenerating dioxygenases (PpoA, PpoB, PpoC, and PpoD) in A. flavus density-dependent phenomena and the effects of loss of these genes on aflatoxin production and seed colonization. Although several single mutants showed alterations in the sclerotia-to-conidia switch, the major effect was observed in a strain downregulated for all five oxygenases (invert repeat transgene [IRT] strain IRT4 = ppoA, ppoB, ppoC, ppoD, and lox). In strain 1RT4, sclerotia production was increased up to 500-fold whereas conidiation was decreased down to 100-fold and the strain was unable to switch into conidial production. Aflatoxin (AF) production for all mutant strains and the wild type was greatest at low population densities and absent in high populations except for strain IRT4, which consistently produced high levels of the mycotoxin. Growth on host seed by both IRT4 and IRT2 (downregulated in ppoA, ppoB, and ppoD) was marked by decreased conidial but increased AF production. We propose that A. flavus oxygenases and the oxylipins they produce act in a highly interdependent network with some redundancy of biological function. These studies provide substantial evidence for oxylipin-based mechanisms in governing fungus-seed interactions and in regulating a coordinated quorum-sensing mechanism in A. flavus.",
author = "Brown, {Sigal Horowitz} and Scott, {James B.} and Jeyanthi Bhaheetharan and Sharpee, {William C.} and Lane Milde and Wilson, {Richard A} and Keller, {Nancy P.}",
year = "2009",
month = "7",
day = "1",
doi = "10.1094/MPMI-22-7-0882",
language = "English (US)",
volume = "22",
pages = "882--894",
journal = "Molecular Plant-Microbe Interactions",
issn = "0894-0282",
publisher = "American Phytopathological Society",
number = "7",

}

TY - JOUR

T1 - Oxygenase coordination is required for morphological transition and the host-fungus interaction of aspergillus flavus

AU - Brown, Sigal Horowitz

AU - Scott, James B.

AU - Bhaheetharan, Jeyanthi

AU - Sharpee, William C.

AU - Milde, Lane

AU - Wilson, Richard A

AU - Keller, Nancy P.

PY - 2009/7/1

Y1 - 2009/7/1

N2 - Oxylipins, a class of oxygenase-derived unsaturated fatty acids, are important signal molecules in many biological systems. Recent characterization of an Aspergillus flavus lipoxygenase gene, lox, revealed its importance in maintaining a density-dependent morphology switch from sclerotia to conidia as population density increased. Here, we present evidence for the involvement of four more oxylipingenerating dioxygenases (PpoA, PpoB, PpoC, and PpoD) in A. flavus density-dependent phenomena and the effects of loss of these genes on aflatoxin production and seed colonization. Although several single mutants showed alterations in the sclerotia-to-conidia switch, the major effect was observed in a strain downregulated for all five oxygenases (invert repeat transgene [IRT] strain IRT4 = ppoA, ppoB, ppoC, ppoD, and lox). In strain 1RT4, sclerotia production was increased up to 500-fold whereas conidiation was decreased down to 100-fold and the strain was unable to switch into conidial production. Aflatoxin (AF) production for all mutant strains and the wild type was greatest at low population densities and absent in high populations except for strain IRT4, which consistently produced high levels of the mycotoxin. Growth on host seed by both IRT4 and IRT2 (downregulated in ppoA, ppoB, and ppoD) was marked by decreased conidial but increased AF production. We propose that A. flavus oxygenases and the oxylipins they produce act in a highly interdependent network with some redundancy of biological function. These studies provide substantial evidence for oxylipin-based mechanisms in governing fungus-seed interactions and in regulating a coordinated quorum-sensing mechanism in A. flavus.

AB - Oxylipins, a class of oxygenase-derived unsaturated fatty acids, are important signal molecules in many biological systems. Recent characterization of an Aspergillus flavus lipoxygenase gene, lox, revealed its importance in maintaining a density-dependent morphology switch from sclerotia to conidia as population density increased. Here, we present evidence for the involvement of four more oxylipingenerating dioxygenases (PpoA, PpoB, PpoC, and PpoD) in A. flavus density-dependent phenomena and the effects of loss of these genes on aflatoxin production and seed colonization. Although several single mutants showed alterations in the sclerotia-to-conidia switch, the major effect was observed in a strain downregulated for all five oxygenases (invert repeat transgene [IRT] strain IRT4 = ppoA, ppoB, ppoC, ppoD, and lox). In strain 1RT4, sclerotia production was increased up to 500-fold whereas conidiation was decreased down to 100-fold and the strain was unable to switch into conidial production. Aflatoxin (AF) production for all mutant strains and the wild type was greatest at low population densities and absent in high populations except for strain IRT4, which consistently produced high levels of the mycotoxin. Growth on host seed by both IRT4 and IRT2 (downregulated in ppoA, ppoB, and ppoD) was marked by decreased conidial but increased AF production. We propose that A. flavus oxygenases and the oxylipins they produce act in a highly interdependent network with some redundancy of biological function. These studies provide substantial evidence for oxylipin-based mechanisms in governing fungus-seed interactions and in regulating a coordinated quorum-sensing mechanism in A. flavus.

UR - http://www.scopus.com/inward/record.url?scp=67649554045&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=67649554045&partnerID=8YFLogxK

U2 - 10.1094/MPMI-22-7-0882

DO - 10.1094/MPMI-22-7-0882

M3 - Article

VL - 22

SP - 882

EP - 894

JO - Molecular Plant-Microbe Interactions

JF - Molecular Plant-Microbe Interactions

SN - 0894-0282

IS - 7

ER -