NCOA3-mediated upregulation of mucin expression via transcriptional and post-translational changes during the development of pancreatic cancer

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

Pancreatic cancer (PC) is characterized by aberrant overexpression of mucins that contribute to its pathogenesis. Although the inflammatory cytokines contribute to mucin overexpression, the mucin profile of PC is markedly distinct from that of normal or inflamed pancreas. We postulated that de novo expression of various mucins in PC involves chromatin modifications. Analysis of chromatin modifying enzymes by PCR array identified differential expression of NCOA3 in MUC4-expressing PC cell lines. Immunohistochemistry analysis in tumor tissues from patients and spontaneous mouse models, and microarray analysis following the knockdown of NCOA3 were performed to elucidate its role in mucin regulation and overall impact on PC. Silencing of NCOA3 in PC cell lines resulted in significant downregulation of two most differentially expressed mucins in PC, MUC4 and MUC1 (P<0.01). Immunohistochemistry analysis in PC tissues and metastatic lesions established an association between NCOA3 and mucin (MUC1 and MUC4) expression. Spontaneous mouse model of PC (K-ras G12D; Pdx-1cre) showed early expression of Ncoa3 during pre-neoplastic lesions. Mechanistically, NCOA3 knockdown abrogated retinoic acid-mediated MUC4 upregulation by restricting MUC4 promoter accessibility as demonstrated by micrococcus nuclease digestion (P<0.05) and chromatin immuno-precipitation analysis. NCOA3 also created pro-inflammatory conditions by upregulating chemokines like CXCL1, 2, 5 and CCL20 (P<0.001). AKT, ubiquitin C, ERK1/2 and NF-κB occupied dominant nodes in the networks significantly modulated after NCOA3 silencing. In addition, NCOA3 stabilized mucins post translationally through fucosylation by FUT8, as the knockdown of FUT8 resulted in the downregulation of MUC4 and MUC1 at protein levels.

Original languageEnglish (US)
Pages (from-to)4879-4889
Number of pages11
JournalOncogene
Volume34
Issue number37
DOIs
StatePublished - Sep 10 2015

Fingerprint

Mucins
Pancreatic Neoplasms
Up-Regulation
Chromatin
Ubiquitin C
Chemokine CXCL1
Down-Regulation
Immunohistochemistry
Micrococcus
Cell Line
Microarray Analysis
Tretinoin
Pancreas
Digestion
Cytokines
Polymerase Chain Reaction
Enzymes

ASJC Scopus subject areas

  • Molecular Biology
  • Genetics
  • Cancer Research

Cite this

@article{6a923a1fc796480690538f05635b43e0,
title = "NCOA3-mediated upregulation of mucin expression via transcriptional and post-translational changes during the development of pancreatic cancer",
abstract = "Pancreatic cancer (PC) is characterized by aberrant overexpression of mucins that contribute to its pathogenesis. Although the inflammatory cytokines contribute to mucin overexpression, the mucin profile of PC is markedly distinct from that of normal or inflamed pancreas. We postulated that de novo expression of various mucins in PC involves chromatin modifications. Analysis of chromatin modifying enzymes by PCR array identified differential expression of NCOA3 in MUC4-expressing PC cell lines. Immunohistochemistry analysis in tumor tissues from patients and spontaneous mouse models, and microarray analysis following the knockdown of NCOA3 were performed to elucidate its role in mucin regulation and overall impact on PC. Silencing of NCOA3 in PC cell lines resulted in significant downregulation of two most differentially expressed mucins in PC, MUC4 and MUC1 (P<0.01). Immunohistochemistry analysis in PC tissues and metastatic lesions established an association between NCOA3 and mucin (MUC1 and MUC4) expression. Spontaneous mouse model of PC (K-ras G12D; Pdx-1cre) showed early expression of Ncoa3 during pre-neoplastic lesions. Mechanistically, NCOA3 knockdown abrogated retinoic acid-mediated MUC4 upregulation by restricting MUC4 promoter accessibility as demonstrated by micrococcus nuclease digestion (P<0.05) and chromatin immuno-precipitation analysis. NCOA3 also created pro-inflammatory conditions by upregulating chemokines like CXCL1, 2, 5 and CCL20 (P<0.001). AKT, ubiquitin C, ERK1/2 and NF-κB occupied dominant nodes in the networks significantly modulated after NCOA3 silencing. In addition, NCOA3 stabilized mucins post translationally through fucosylation by FUT8, as the knockdown of FUT8 resulted in the downregulation of MUC4 and MUC1 at protein levels.",
author = "Sushil Kumar and S. Das and Satyanarayana Rachagani and Sukwinder Kaur and S. Joshi and Johansson, {S. L.} and {Palanimuthu Ponnusamy}, Moorthy and Maneesh Jain and Batra, {Surinder Kumar}",
year = "2015",
month = "9",
day = "10",
doi = "10.1038/onc.2014.409",
language = "English (US)",
volume = "34",
pages = "4879--4889",
journal = "Oncogene",
issn = "0950-9232",
publisher = "Nature Publishing Group",
number = "37",

}

TY - JOUR

T1 - NCOA3-mediated upregulation of mucin expression via transcriptional and post-translational changes during the development of pancreatic cancer

AU - Kumar, Sushil

AU - Das, S.

AU - Rachagani, Satyanarayana

AU - Kaur, Sukwinder

AU - Joshi, S.

AU - Johansson, S. L.

AU - Palanimuthu Ponnusamy, Moorthy

AU - Jain, Maneesh

AU - Batra, Surinder Kumar

PY - 2015/9/10

Y1 - 2015/9/10

N2 - Pancreatic cancer (PC) is characterized by aberrant overexpression of mucins that contribute to its pathogenesis. Although the inflammatory cytokines contribute to mucin overexpression, the mucin profile of PC is markedly distinct from that of normal or inflamed pancreas. We postulated that de novo expression of various mucins in PC involves chromatin modifications. Analysis of chromatin modifying enzymes by PCR array identified differential expression of NCOA3 in MUC4-expressing PC cell lines. Immunohistochemistry analysis in tumor tissues from patients and spontaneous mouse models, and microarray analysis following the knockdown of NCOA3 were performed to elucidate its role in mucin regulation and overall impact on PC. Silencing of NCOA3 in PC cell lines resulted in significant downregulation of two most differentially expressed mucins in PC, MUC4 and MUC1 (P<0.01). Immunohistochemistry analysis in PC tissues and metastatic lesions established an association between NCOA3 and mucin (MUC1 and MUC4) expression. Spontaneous mouse model of PC (K-ras G12D; Pdx-1cre) showed early expression of Ncoa3 during pre-neoplastic lesions. Mechanistically, NCOA3 knockdown abrogated retinoic acid-mediated MUC4 upregulation by restricting MUC4 promoter accessibility as demonstrated by micrococcus nuclease digestion (P<0.05) and chromatin immuno-precipitation analysis. NCOA3 also created pro-inflammatory conditions by upregulating chemokines like CXCL1, 2, 5 and CCL20 (P<0.001). AKT, ubiquitin C, ERK1/2 and NF-κB occupied dominant nodes in the networks significantly modulated after NCOA3 silencing. In addition, NCOA3 stabilized mucins post translationally through fucosylation by FUT8, as the knockdown of FUT8 resulted in the downregulation of MUC4 and MUC1 at protein levels.

AB - Pancreatic cancer (PC) is characterized by aberrant overexpression of mucins that contribute to its pathogenesis. Although the inflammatory cytokines contribute to mucin overexpression, the mucin profile of PC is markedly distinct from that of normal or inflamed pancreas. We postulated that de novo expression of various mucins in PC involves chromatin modifications. Analysis of chromatin modifying enzymes by PCR array identified differential expression of NCOA3 in MUC4-expressing PC cell lines. Immunohistochemistry analysis in tumor tissues from patients and spontaneous mouse models, and microarray analysis following the knockdown of NCOA3 were performed to elucidate its role in mucin regulation and overall impact on PC. Silencing of NCOA3 in PC cell lines resulted in significant downregulation of two most differentially expressed mucins in PC, MUC4 and MUC1 (P<0.01). Immunohistochemistry analysis in PC tissues and metastatic lesions established an association between NCOA3 and mucin (MUC1 and MUC4) expression. Spontaneous mouse model of PC (K-ras G12D; Pdx-1cre) showed early expression of Ncoa3 during pre-neoplastic lesions. Mechanistically, NCOA3 knockdown abrogated retinoic acid-mediated MUC4 upregulation by restricting MUC4 promoter accessibility as demonstrated by micrococcus nuclease digestion (P<0.05) and chromatin immuno-precipitation analysis. NCOA3 also created pro-inflammatory conditions by upregulating chemokines like CXCL1, 2, 5 and CCL20 (P<0.001). AKT, ubiquitin C, ERK1/2 and NF-κB occupied dominant nodes in the networks significantly modulated after NCOA3 silencing. In addition, NCOA3 stabilized mucins post translationally through fucosylation by FUT8, as the knockdown of FUT8 resulted in the downregulation of MUC4 and MUC1 at protein levels.

UR - http://www.scopus.com/inward/record.url?scp=84941315453&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84941315453&partnerID=8YFLogxK

U2 - 10.1038/onc.2014.409

DO - 10.1038/onc.2014.409

M3 - Article

C2 - 25531332

AN - SCOPUS:84941315453

VL - 34

SP - 4879

EP - 4889

JO - Oncogene

JF - Oncogene

SN - 0950-9232

IS - 37

ER -