MULTIPLE SERIES MODELING AND FORECASTING OF SHORT-TERM LOAD DEMAND BY DATA DEPENDENT SYSTEMS.

K. P. Rajurkar, R. E. Newill

Research output: Contribution to conferencePaper

1 Scopus citations

Abstract

The authors illustrate an application of a recently developed stochastic modeling and analysis methodology, called data dependent systems (DDS), to short-term load forecasting. The salient features of DDS methodology pertaining to forecasting and updating the forecasts are briefly reviewed. Univariate as well as simplified vector models called extended autoregressive moving average (EARMA) models are obtained for actual hourly load and weather data for a small community (Curtis, Nebraska). The conditional expectation of the statistically adequate ARMA and EARMA models provides an accurate forecast for peak values of the load. The usefulness of weather data as leading indicators is explored. The improvements due to updating and using leading indicators are also discussed.

Original languageEnglish (US)
Pages448-452
Number of pages5
Publication statusPublished - Dec 1 1985

ASJC Scopus subject areas

  • Engineering(all)

Cite this