Microinjection of ANG II into paraventricular nucleus enhances cardiac sympathetic afferent reflex in rats

Guo Qing Zhu, Kuashik P. Patel, Irving H. Zucker, Wei Wang

Research output: Contribution to journalArticle

74 Scopus citations


The aims of present study were to determine whether angiotensin II (ANG II) in the paraventricular nucleus (PVN) is involved in the central integration of the cardiac sympathetic afferent reflex and whether this effect is mediated by the ANG type 1 (AT1) receptor. While the animals were under α-chloralose and urethane anesthesia, mean arterial pressure, heart rate, and renal sympathetic nerve activity (RSNA) were recorded in sinoaortic- denervated and cervical-vagotomized rats. A cannula was inserted into the left PVN for microinjection of ANG II. The cardiac sympathetic afferent reflex was tested by electrical stimulation (5, 10, 20, and 30 Hz in 10 V and 1 ms) of the afferent cardiac sympathetic nerves or epicardial application of bradykinin (BK) (0.04 and 0.4 μg in 2 μl). Microinjection of ANG II (0.03, 0.3, and 3 nmol) into the PVN resulted in dose-related increases in the RSNA responses to electrical stimulation. The percent change of RSNA response to 20- and 30-Hz stimulation increased significantly at the highest dose of ANG II (3 nmol). The effects of ANG II were prevented by pretreatment with losartan (50 nmol) into the PVN. Micro-injection of ANG II (0.3 nmol) into the PVN significantly enhanced the RSNA responses to epicardial application of BK, which was abolished by pretreatment with losartan (50 nmol) into the PVN. These results suggest that exogenous ANG II in the PVN augments the cardiac sympathetic afferent reflex evoked by both electrical stimulation of cardiac sympathetic afferent nerves and epicardial application of BK. These central effects of ANG II are mediated by AT1 receptors.

Original languageEnglish (US)
Pages (from-to)H2039-H2045
JournalAmerican Journal of Physiology - Heart and Circulatory Physiology
Issue number6 51-6
StatePublished - Jul 2 2002



  • Angiotensin type 1 receptor
  • Renal sympathetic nerve activity

ASJC Scopus subject areas

  • Physiology
  • Cardiology and Cardiovascular Medicine
  • Physiology (medical)

Cite this