Metabolism and DNA binding studies of 4-hydroxyestradiol and estradiol-3,4-quinone in vitro and in female ACI rat mammary gland in vivo

Kai Ming Li, Rosa Todorovic, Prabu Devanesan, Sheila Higginbotham, Harald Köfeler, Ragulan Ramanathan, Michael L. Gross, Eleanor G Rogan, Ercole Cavalieri

Research output: Contribution to journalArticle

147 Citations (Scopus)

Abstract

Studies of estrogen metabolism, formation of DNA adducts, carcinogenicity, cell transformation and mutagenicity have led to the hypothesis that reaction of certain estrogen metabolites, predominantly catechol estrogen-3,4-quinones, with DNA can generate the critical mutations initiating breast, prostate and other cancers. The endogenous estrogens estrone (E1) and estradiol (E2) are oxidized to catechol estrogens (CE), 2- and 4-hydroxylated estrogens, which can be further oxidized to CE quinones. To determine possible DNA adducts of E1(E2)-3,4-quinones [E1(E2)-3,4-Q], we reported previously that the reaction of E1(E2)-3,4-Q with dG produces the depurinating adduct 4-hydroxyE1(E2)-1-N7Gua [4-OHE1(E2)-1-N7Gua] by 1,4-Michael addition (Stack et al., Chem. Res. Toxicol., 1996, 9, 851). We report here that reaction of E1(E2)-3,4-Q with Ade results in the formation of 4-OHE1(E2)-1-N3Ade by 1,4-Michael addition. The N7Gua and N3Ade depurinating adducts formed both in vitro and in rat mammary gland in vivo were analyzed by HPLC with electrochemical detection and, for some samples, by LC/MS/MS. When E2-3,4-Q was reacted with DNA in vitro, the depurinating adducts 4-OHE1(E2)-1-N3Ade and 4-OHE1(E2)-1-N7Gua, which are rapidly lost from DNA by cleavage of the glycosyl bond, were formed (>99% of the total adducts), as well as traces of stable adducts, which remain in DNA unless removed by repair. Similar results were obtained when 4-OHE2 was oxidized by horseradish peroxidase, lactoperoxidase, tyrosinase or phenobarbital-induced rat liver microsomes in the presence of DNA. When 4-OHE2 or E2-3,4-Q was injected into the mammary glands of female ACI rats in vivo and the mammary tissue was excised 1 h later, the depurinating adducts 4-OHE2-1-N3Ade and 4-OHE2-1-N7Gua constituted >99% of the total adducts formed. In addition, 4-OHE2 conjugates formed by reaction of E2-3,4-Q with glutathione were also detected. These results demonstrate that the 4-CE are metabolized to CE-3,4-Q, which react with DNA to form primarily depurinating adducts. These adducts can generate the critical mutations that initiate cancer (Chakravarti et al., Oncogene, 2001, 20, 7945; Chakravarti et al., Proc. Am. Assoc. Cancer Res., 2003, 44, 180).

Original languageEnglish (US)
Pages (from-to)289-297
Number of pages9
JournalCarcinogenesis
Volume25
Issue number2
DOIs
StatePublished - Feb 1 2004

Fingerprint

Inbred ACI Rats
Human Mammary Glands
Catechol Estrogens
DNA
Estrogens
Quinones
DNA Adducts
Breast
Lactoperoxidase
DNA Cleavage
Mutation
Monophenol Monooxygenase
Estrone
Liver Microsomes
Horseradish Peroxidase
Phenobarbital
Oncogenes
Glutathione
In Vitro Techniques
4-hydroxyestradiol

ASJC Scopus subject areas

  • Cancer Research

Cite this

Metabolism and DNA binding studies of 4-hydroxyestradiol and estradiol-3,4-quinone in vitro and in female ACI rat mammary gland in vivo. / Li, Kai Ming; Todorovic, Rosa; Devanesan, Prabu; Higginbotham, Sheila; Köfeler, Harald; Ramanathan, Ragulan; Gross, Michael L.; Rogan, Eleanor G; Cavalieri, Ercole.

In: Carcinogenesis, Vol. 25, No. 2, 01.02.2004, p. 289-297.

Research output: Contribution to journalArticle

Li, Kai Ming ; Todorovic, Rosa ; Devanesan, Prabu ; Higginbotham, Sheila ; Köfeler, Harald ; Ramanathan, Ragulan ; Gross, Michael L. ; Rogan, Eleanor G ; Cavalieri, Ercole. / Metabolism and DNA binding studies of 4-hydroxyestradiol and estradiol-3,4-quinone in vitro and in female ACI rat mammary gland in vivo. In: Carcinogenesis. 2004 ; Vol. 25, No. 2. pp. 289-297.
@article{b669ee4203b34b38867e05c7230683f2,
title = "Metabolism and DNA binding studies of 4-hydroxyestradiol and estradiol-3,4-quinone in vitro and in female ACI rat mammary gland in vivo",
abstract = "Studies of estrogen metabolism, formation of DNA adducts, carcinogenicity, cell transformation and mutagenicity have led to the hypothesis that reaction of certain estrogen metabolites, predominantly catechol estrogen-3,4-quinones, with DNA can generate the critical mutations initiating breast, prostate and other cancers. The endogenous estrogens estrone (E1) and estradiol (E2) are oxidized to catechol estrogens (CE), 2- and 4-hydroxylated estrogens, which can be further oxidized to CE quinones. To determine possible DNA adducts of E1(E2)-3,4-quinones [E1(E2)-3,4-Q], we reported previously that the reaction of E1(E2)-3,4-Q with dG produces the depurinating adduct 4-hydroxyE1(E2)-1-N7Gua [4-OHE1(E2)-1-N7Gua] by 1,4-Michael addition (Stack et al., Chem. Res. Toxicol., 1996, 9, 851). We report here that reaction of E1(E2)-3,4-Q with Ade results in the formation of 4-OHE1(E2)-1-N3Ade by 1,4-Michael addition. The N7Gua and N3Ade depurinating adducts formed both in vitro and in rat mammary gland in vivo were analyzed by HPLC with electrochemical detection and, for some samples, by LC/MS/MS. When E2-3,4-Q was reacted with DNA in vitro, the depurinating adducts 4-OHE1(E2)-1-N3Ade and 4-OHE1(E2)-1-N7Gua, which are rapidly lost from DNA by cleavage of the glycosyl bond, were formed (>99{\%} of the total adducts), as well as traces of stable adducts, which remain in DNA unless removed by repair. Similar results were obtained when 4-OHE2 was oxidized by horseradish peroxidase, lactoperoxidase, tyrosinase or phenobarbital-induced rat liver microsomes in the presence of DNA. When 4-OHE2 or E2-3,4-Q was injected into the mammary glands of female ACI rats in vivo and the mammary tissue was excised 1 h later, the depurinating adducts 4-OHE2-1-N3Ade and 4-OHE2-1-N7Gua constituted >99{\%} of the total adducts formed. In addition, 4-OHE2 conjugates formed by reaction of E2-3,4-Q with glutathione were also detected. These results demonstrate that the 4-CE are metabolized to CE-3,4-Q, which react with DNA to form primarily depurinating adducts. These adducts can generate the critical mutations that initiate cancer (Chakravarti et al., Oncogene, 2001, 20, 7945; Chakravarti et al., Proc. Am. Assoc. Cancer Res., 2003, 44, 180).",
author = "Li, {Kai Ming} and Rosa Todorovic and Prabu Devanesan and Sheila Higginbotham and Harald K{\"o}feler and Ragulan Ramanathan and Gross, {Michael L.} and Rogan, {Eleanor G} and Ercole Cavalieri",
year = "2004",
month = "2",
day = "1",
doi = "10.1093/carcin/bgg191",
language = "English (US)",
volume = "25",
pages = "289--297",
journal = "Carcinogenesis",
issn = "0143-3334",
publisher = "Oxford University Press",
number = "2",

}

TY - JOUR

T1 - Metabolism and DNA binding studies of 4-hydroxyestradiol and estradiol-3,4-quinone in vitro and in female ACI rat mammary gland in vivo

AU - Li, Kai Ming

AU - Todorovic, Rosa

AU - Devanesan, Prabu

AU - Higginbotham, Sheila

AU - Köfeler, Harald

AU - Ramanathan, Ragulan

AU - Gross, Michael L.

AU - Rogan, Eleanor G

AU - Cavalieri, Ercole

PY - 2004/2/1

Y1 - 2004/2/1

N2 - Studies of estrogen metabolism, formation of DNA adducts, carcinogenicity, cell transformation and mutagenicity have led to the hypothesis that reaction of certain estrogen metabolites, predominantly catechol estrogen-3,4-quinones, with DNA can generate the critical mutations initiating breast, prostate and other cancers. The endogenous estrogens estrone (E1) and estradiol (E2) are oxidized to catechol estrogens (CE), 2- and 4-hydroxylated estrogens, which can be further oxidized to CE quinones. To determine possible DNA adducts of E1(E2)-3,4-quinones [E1(E2)-3,4-Q], we reported previously that the reaction of E1(E2)-3,4-Q with dG produces the depurinating adduct 4-hydroxyE1(E2)-1-N7Gua [4-OHE1(E2)-1-N7Gua] by 1,4-Michael addition (Stack et al., Chem. Res. Toxicol., 1996, 9, 851). We report here that reaction of E1(E2)-3,4-Q with Ade results in the formation of 4-OHE1(E2)-1-N3Ade by 1,4-Michael addition. The N7Gua and N3Ade depurinating adducts formed both in vitro and in rat mammary gland in vivo were analyzed by HPLC with electrochemical detection and, for some samples, by LC/MS/MS. When E2-3,4-Q was reacted with DNA in vitro, the depurinating adducts 4-OHE1(E2)-1-N3Ade and 4-OHE1(E2)-1-N7Gua, which are rapidly lost from DNA by cleavage of the glycosyl bond, were formed (>99% of the total adducts), as well as traces of stable adducts, which remain in DNA unless removed by repair. Similar results were obtained when 4-OHE2 was oxidized by horseradish peroxidase, lactoperoxidase, tyrosinase or phenobarbital-induced rat liver microsomes in the presence of DNA. When 4-OHE2 or E2-3,4-Q was injected into the mammary glands of female ACI rats in vivo and the mammary tissue was excised 1 h later, the depurinating adducts 4-OHE2-1-N3Ade and 4-OHE2-1-N7Gua constituted >99% of the total adducts formed. In addition, 4-OHE2 conjugates formed by reaction of E2-3,4-Q with glutathione were also detected. These results demonstrate that the 4-CE are metabolized to CE-3,4-Q, which react with DNA to form primarily depurinating adducts. These adducts can generate the critical mutations that initiate cancer (Chakravarti et al., Oncogene, 2001, 20, 7945; Chakravarti et al., Proc. Am. Assoc. Cancer Res., 2003, 44, 180).

AB - Studies of estrogen metabolism, formation of DNA adducts, carcinogenicity, cell transformation and mutagenicity have led to the hypothesis that reaction of certain estrogen metabolites, predominantly catechol estrogen-3,4-quinones, with DNA can generate the critical mutations initiating breast, prostate and other cancers. The endogenous estrogens estrone (E1) and estradiol (E2) are oxidized to catechol estrogens (CE), 2- and 4-hydroxylated estrogens, which can be further oxidized to CE quinones. To determine possible DNA adducts of E1(E2)-3,4-quinones [E1(E2)-3,4-Q], we reported previously that the reaction of E1(E2)-3,4-Q with dG produces the depurinating adduct 4-hydroxyE1(E2)-1-N7Gua [4-OHE1(E2)-1-N7Gua] by 1,4-Michael addition (Stack et al., Chem. Res. Toxicol., 1996, 9, 851). We report here that reaction of E1(E2)-3,4-Q with Ade results in the formation of 4-OHE1(E2)-1-N3Ade by 1,4-Michael addition. The N7Gua and N3Ade depurinating adducts formed both in vitro and in rat mammary gland in vivo were analyzed by HPLC with electrochemical detection and, for some samples, by LC/MS/MS. When E2-3,4-Q was reacted with DNA in vitro, the depurinating adducts 4-OHE1(E2)-1-N3Ade and 4-OHE1(E2)-1-N7Gua, which are rapidly lost from DNA by cleavage of the glycosyl bond, were formed (>99% of the total adducts), as well as traces of stable adducts, which remain in DNA unless removed by repair. Similar results were obtained when 4-OHE2 was oxidized by horseradish peroxidase, lactoperoxidase, tyrosinase or phenobarbital-induced rat liver microsomes in the presence of DNA. When 4-OHE2 or E2-3,4-Q was injected into the mammary glands of female ACI rats in vivo and the mammary tissue was excised 1 h later, the depurinating adducts 4-OHE2-1-N3Ade and 4-OHE2-1-N7Gua constituted >99% of the total adducts formed. In addition, 4-OHE2 conjugates formed by reaction of E2-3,4-Q with glutathione were also detected. These results demonstrate that the 4-CE are metabolized to CE-3,4-Q, which react with DNA to form primarily depurinating adducts. These adducts can generate the critical mutations that initiate cancer (Chakravarti et al., Oncogene, 2001, 20, 7945; Chakravarti et al., Proc. Am. Assoc. Cancer Res., 2003, 44, 180).

UR - http://www.scopus.com/inward/record.url?scp=1242353081&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=1242353081&partnerID=8YFLogxK

U2 - 10.1093/carcin/bgg191

DO - 10.1093/carcin/bgg191

M3 - Article

VL - 25

SP - 289

EP - 297

JO - Carcinogenesis

JF - Carcinogenesis

SN - 0143-3334

IS - 2

ER -