Mechanomyographic amplitude and mean power output during maximal, concentric, isokinetic muscle actions

Joel T. Cramer, Terry J. Housh, Glen O. Johnson, Kyle T. Ebersole, Sharon R. Perry, Anthony J. Bull

Research output: Contribution to journalArticle

44 Citations (Scopus)

Abstract

The purpose of this study was to determine the velocity-related patterns for mechanomyographic (MMG) amplitude, electromyographic (EMG) amplitude, mean power output (MP), and peak torque (PT) of the superficial muscles of the quadriceps femoris (vastus lateralis [VL], rectus femoris [RF], and vastus medialis [VM]) during maximal, concentric, isokinetic leg extensions. Twelve adult women (mean ± SD: 22 ± 3 years of age) performed such leg extensions at velocities of 60°, 120°, 180°, 240°, and 300°/s on a Cybex 6000 dynamometer. PT decreased (P < 0.05) across velocity to 240°/s. MP and MMG amplitude for each muscle (VL, RF, and VM) increased (P < 0.05) with velocity to 240°/s and then plateaued. EMG amplitude increased (P < 0.05) to 240°/s for the VL, remained unchanged across velocity (P > 0.05) for the RF, and increased (P < 0.05) to 300°/s for the VM. The results indicated close similarities between the velocity-related patterns for MMG amplitude and MP, but dissociations among EMG amplitude, MMG amplitude, and PT. These findings support the recent hypothesis that MMG amplitude is more closely related to MP than PT during maximal, concentric, isokinetic muscle actions and, therefore, may be useful for monitoring training-induced changes in muscle power. (C) 2000 John Wiley and Sons, Inc.

Original languageEnglish (US)
Pages (from-to)1826-1831
Number of pages6
JournalMuscle and Nerve
Volume23
Issue number12
DOIs
StatePublished - Dec 14 2000

Fingerprint

Quadriceps Muscle
Torque
Muscles
Leg

Keywords

  • Concentric muscle actions
  • Electromyography
  • Mechanomyography
  • Power
  • Torque

ASJC Scopus subject areas

  • Physiology
  • Clinical Neurology
  • Cellular and Molecular Neuroscience
  • Physiology (medical)

Cite this

Mechanomyographic amplitude and mean power output during maximal, concentric, isokinetic muscle actions. / Cramer, Joel T.; Housh, Terry J.; Johnson, Glen O.; Ebersole, Kyle T.; Perry, Sharon R.; Bull, Anthony J.

In: Muscle and Nerve, Vol. 23, No. 12, 14.12.2000, p. 1826-1831.

Research output: Contribution to journalArticle

Cramer, Joel T. ; Housh, Terry J. ; Johnson, Glen O. ; Ebersole, Kyle T. ; Perry, Sharon R. ; Bull, Anthony J. / Mechanomyographic amplitude and mean power output during maximal, concentric, isokinetic muscle actions. In: Muscle and Nerve. 2000 ; Vol. 23, No. 12. pp. 1826-1831.
@article{48861b96ed754b75a3a0fb5563cd57eb,
title = "Mechanomyographic amplitude and mean power output during maximal, concentric, isokinetic muscle actions",
abstract = "The purpose of this study was to determine the velocity-related patterns for mechanomyographic (MMG) amplitude, electromyographic (EMG) amplitude, mean power output (MP), and peak torque (PT) of the superficial muscles of the quadriceps femoris (vastus lateralis [VL], rectus femoris [RF], and vastus medialis [VM]) during maximal, concentric, isokinetic leg extensions. Twelve adult women (mean ± SD: 22 ± 3 years of age) performed such leg extensions at velocities of 60°, 120°, 180°, 240°, and 300°/s on a Cybex 6000 dynamometer. PT decreased (P < 0.05) across velocity to 240°/s. MP and MMG amplitude for each muscle (VL, RF, and VM) increased (P < 0.05) with velocity to 240°/s and then plateaued. EMG amplitude increased (P < 0.05) to 240°/s for the VL, remained unchanged across velocity (P > 0.05) for the RF, and increased (P < 0.05) to 300°/s for the VM. The results indicated close similarities between the velocity-related patterns for MMG amplitude and MP, but dissociations among EMG amplitude, MMG amplitude, and PT. These findings support the recent hypothesis that MMG amplitude is more closely related to MP than PT during maximal, concentric, isokinetic muscle actions and, therefore, may be useful for monitoring training-induced changes in muscle power. (C) 2000 John Wiley and Sons, Inc.",
keywords = "Concentric muscle actions, Electromyography, Mechanomyography, Power, Torque",
author = "Cramer, {Joel T.} and Housh, {Terry J.} and Johnson, {Glen O.} and Ebersole, {Kyle T.} and Perry, {Sharon R.} and Bull, {Anthony J.}",
year = "2000",
month = "12",
day = "14",
doi = "10.1002/1097-4598(200012)23:12<1826::AID-MUS5>3.0.CO;2-7",
language = "English (US)",
volume = "23",
pages = "1826--1831",
journal = "Muscle & nerve",
issn = "0148-639X",
publisher = "John Wiley and Sons Inc.",
number = "12",

}

TY - JOUR

T1 - Mechanomyographic amplitude and mean power output during maximal, concentric, isokinetic muscle actions

AU - Cramer, Joel T.

AU - Housh, Terry J.

AU - Johnson, Glen O.

AU - Ebersole, Kyle T.

AU - Perry, Sharon R.

AU - Bull, Anthony J.

PY - 2000/12/14

Y1 - 2000/12/14

N2 - The purpose of this study was to determine the velocity-related patterns for mechanomyographic (MMG) amplitude, electromyographic (EMG) amplitude, mean power output (MP), and peak torque (PT) of the superficial muscles of the quadriceps femoris (vastus lateralis [VL], rectus femoris [RF], and vastus medialis [VM]) during maximal, concentric, isokinetic leg extensions. Twelve adult women (mean ± SD: 22 ± 3 years of age) performed such leg extensions at velocities of 60°, 120°, 180°, 240°, and 300°/s on a Cybex 6000 dynamometer. PT decreased (P < 0.05) across velocity to 240°/s. MP and MMG amplitude for each muscle (VL, RF, and VM) increased (P < 0.05) with velocity to 240°/s and then plateaued. EMG amplitude increased (P < 0.05) to 240°/s for the VL, remained unchanged across velocity (P > 0.05) for the RF, and increased (P < 0.05) to 300°/s for the VM. The results indicated close similarities between the velocity-related patterns for MMG amplitude and MP, but dissociations among EMG amplitude, MMG amplitude, and PT. These findings support the recent hypothesis that MMG amplitude is more closely related to MP than PT during maximal, concentric, isokinetic muscle actions and, therefore, may be useful for monitoring training-induced changes in muscle power. (C) 2000 John Wiley and Sons, Inc.

AB - The purpose of this study was to determine the velocity-related patterns for mechanomyographic (MMG) amplitude, electromyographic (EMG) amplitude, mean power output (MP), and peak torque (PT) of the superficial muscles of the quadriceps femoris (vastus lateralis [VL], rectus femoris [RF], and vastus medialis [VM]) during maximal, concentric, isokinetic leg extensions. Twelve adult women (mean ± SD: 22 ± 3 years of age) performed such leg extensions at velocities of 60°, 120°, 180°, 240°, and 300°/s on a Cybex 6000 dynamometer. PT decreased (P < 0.05) across velocity to 240°/s. MP and MMG amplitude for each muscle (VL, RF, and VM) increased (P < 0.05) with velocity to 240°/s and then plateaued. EMG amplitude increased (P < 0.05) to 240°/s for the VL, remained unchanged across velocity (P > 0.05) for the RF, and increased (P < 0.05) to 300°/s for the VM. The results indicated close similarities between the velocity-related patterns for MMG amplitude and MP, but dissociations among EMG amplitude, MMG amplitude, and PT. These findings support the recent hypothesis that MMG amplitude is more closely related to MP than PT during maximal, concentric, isokinetic muscle actions and, therefore, may be useful for monitoring training-induced changes in muscle power. (C) 2000 John Wiley and Sons, Inc.

KW - Concentric muscle actions

KW - Electromyography

KW - Mechanomyography

KW - Power

KW - Torque

UR - http://www.scopus.com/inward/record.url?scp=0033652882&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033652882&partnerID=8YFLogxK

U2 - 10.1002/1097-4598(200012)23:12<1826::AID-MUS5>3.0.CO;2-7

DO - 10.1002/1097-4598(200012)23:12<1826::AID-MUS5>3.0.CO;2-7

M3 - Article

C2 - 11102905

AN - SCOPUS:0033652882

VL - 23

SP - 1826

EP - 1831

JO - Muscle & nerve

JF - Muscle & nerve

SN - 0148-639X

IS - 12

ER -