Maximizing Specific Loss Power for Magnetic Hyperthermia by Hard–Soft Mixed Ferrites

Shuli He, Hongwang Zhang, Yihao Liu, Fan Sun, Xiang Yu, Xueyan Li, Li Zhang, Lichen Wang, Keya Mao, Gangshi Wang, Yunjuan Lin, Zhenchuan Han, Renat Sabirianov, Hao Zeng

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

Maximized specific loss power and intrinsic loss power approaching theoretical limits for alternating-current (AC) magnetic-field heating of nanoparticles are reported. This is achieved by engineering the effective magnetic anisotropy barrier of nanoparticles via alloying of hard and soft ferrites. 22 nm Co0.03Mn0.28Fe2.7O4/SiO2 nanoparticles reach a specific loss power value of 3417 W g−1 metal at a field of 33 kA m−1 and 380 kHz. Biocompatible Zn0.3Fe2.7O4/SiO2 nanoparticles achieve specific loss power of 500 W g−1 metal and intrinsic loss power of 26.8 nHm2 kg−1 at field parameters of 7 kA m−1 and 380 kHz, below the clinical safety limit. Magnetic bone cement achieves heating adequate for bone tumor hyperthermia, incorporating an ultralow dosage of just 1 wt% of nanoparticles. In cellular hyperthermia experiments, these nanoparticles demonstrate high cell death rate at low field parameters. Zn0.3Fe2.7O4/SiO2 nanoparticles show cell viabilities above 97% at concentrations up to 500 µg mL−1 within 48 h, suggesting toxicity lower than that of magnetite.

Original languageEnglish (US)
Article number1800135
JournalSmall
Volume14
Issue number29
DOIs
StatePublished - Jul 19 2018

Fingerprint

Ferrites
Nanoparticles
Fever
Heating
Metals
Ferrosoferric Oxide
Bone cement
Bone Cements
Magnetic anisotropy
Anisotropy
Magnetite
Cell death
Magnetic Fields
ferrite
Alloying
Toxicity
Tumors
Cell Survival
Bone
Cell Death

Keywords

  • intrinsic loss power
  • magnetic anisotropy
  • magnetic hyperthermia
  • magnetic nanoparticles
  • specific loss power

ASJC Scopus subject areas

  • Biotechnology
  • Biomaterials
  • Chemistry(all)
  • Materials Science(all)

Cite this

He, S., Zhang, H., Liu, Y., Sun, F., Yu, X., Li, X., ... Zeng, H. (2018). Maximizing Specific Loss Power for Magnetic Hyperthermia by Hard–Soft Mixed Ferrites. Small, 14(29), [1800135]. https://doi.org/10.1002/smll.201800135

Maximizing Specific Loss Power for Magnetic Hyperthermia by Hard–Soft Mixed Ferrites. / He, Shuli; Zhang, Hongwang; Liu, Yihao; Sun, Fan; Yu, Xiang; Li, Xueyan; Zhang, Li; Wang, Lichen; Mao, Keya; Wang, Gangshi; Lin, Yunjuan; Han, Zhenchuan; Sabirianov, Renat; Zeng, Hao.

In: Small, Vol. 14, No. 29, 1800135, 19.07.2018.

Research output: Contribution to journalArticle

He, S, Zhang, H, Liu, Y, Sun, F, Yu, X, Li, X, Zhang, L, Wang, L, Mao, K, Wang, G, Lin, Y, Han, Z, Sabirianov, R & Zeng, H 2018, 'Maximizing Specific Loss Power for Magnetic Hyperthermia by Hard–Soft Mixed Ferrites', Small, vol. 14, no. 29, 1800135. https://doi.org/10.1002/smll.201800135
He, Shuli ; Zhang, Hongwang ; Liu, Yihao ; Sun, Fan ; Yu, Xiang ; Li, Xueyan ; Zhang, Li ; Wang, Lichen ; Mao, Keya ; Wang, Gangshi ; Lin, Yunjuan ; Han, Zhenchuan ; Sabirianov, Renat ; Zeng, Hao. / Maximizing Specific Loss Power for Magnetic Hyperthermia by Hard–Soft Mixed Ferrites. In: Small. 2018 ; Vol. 14, No. 29.
@article{8122a2d66f8045e289e5be636f93a730,
title = "Maximizing Specific Loss Power for Magnetic Hyperthermia by Hard–Soft Mixed Ferrites",
abstract = "Maximized specific loss power and intrinsic loss power approaching theoretical limits for alternating-current (AC) magnetic-field heating of nanoparticles are reported. This is achieved by engineering the effective magnetic anisotropy barrier of nanoparticles via alloying of hard and soft ferrites. 22 nm Co0.03Mn0.28Fe2.7O4/SiO2 nanoparticles reach a specific loss power value of 3417 W g−1 metal at a field of 33 kA m−1 and 380 kHz. Biocompatible Zn0.3Fe2.7O4/SiO2 nanoparticles achieve specific loss power of 500 W g−1 metal and intrinsic loss power of 26.8 nHm2 kg−1 at field parameters of 7 kA m−1 and 380 kHz, below the clinical safety limit. Magnetic bone cement achieves heating adequate for bone tumor hyperthermia, incorporating an ultralow dosage of just 1 wt{\%} of nanoparticles. In cellular hyperthermia experiments, these nanoparticles demonstrate high cell death rate at low field parameters. Zn0.3Fe2.7O4/SiO2 nanoparticles show cell viabilities above 97{\%} at concentrations up to 500 µg mL−1 within 48 h, suggesting toxicity lower than that of magnetite.",
keywords = "intrinsic loss power, magnetic anisotropy, magnetic hyperthermia, magnetic nanoparticles, specific loss power",
author = "Shuli He and Hongwang Zhang and Yihao Liu and Fan Sun and Xiang Yu and Xueyan Li and Li Zhang and Lichen Wang and Keya Mao and Gangshi Wang and Yunjuan Lin and Zhenchuan Han and Renat Sabirianov and Hao Zeng",
year = "2018",
month = "7",
day = "19",
doi = "10.1002/smll.201800135",
language = "English (US)",
volume = "14",
journal = "Small",
issn = "1613-6810",
publisher = "Wiley-VCH Verlag",
number = "29",

}

TY - JOUR

T1 - Maximizing Specific Loss Power for Magnetic Hyperthermia by Hard–Soft Mixed Ferrites

AU - He, Shuli

AU - Zhang, Hongwang

AU - Liu, Yihao

AU - Sun, Fan

AU - Yu, Xiang

AU - Li, Xueyan

AU - Zhang, Li

AU - Wang, Lichen

AU - Mao, Keya

AU - Wang, Gangshi

AU - Lin, Yunjuan

AU - Han, Zhenchuan

AU - Sabirianov, Renat

AU - Zeng, Hao

PY - 2018/7/19

Y1 - 2018/7/19

N2 - Maximized specific loss power and intrinsic loss power approaching theoretical limits for alternating-current (AC) magnetic-field heating of nanoparticles are reported. This is achieved by engineering the effective magnetic anisotropy barrier of nanoparticles via alloying of hard and soft ferrites. 22 nm Co0.03Mn0.28Fe2.7O4/SiO2 nanoparticles reach a specific loss power value of 3417 W g−1 metal at a field of 33 kA m−1 and 380 kHz. Biocompatible Zn0.3Fe2.7O4/SiO2 nanoparticles achieve specific loss power of 500 W g−1 metal and intrinsic loss power of 26.8 nHm2 kg−1 at field parameters of 7 kA m−1 and 380 kHz, below the clinical safety limit. Magnetic bone cement achieves heating adequate for bone tumor hyperthermia, incorporating an ultralow dosage of just 1 wt% of nanoparticles. In cellular hyperthermia experiments, these nanoparticles demonstrate high cell death rate at low field parameters. Zn0.3Fe2.7O4/SiO2 nanoparticles show cell viabilities above 97% at concentrations up to 500 µg mL−1 within 48 h, suggesting toxicity lower than that of magnetite.

AB - Maximized specific loss power and intrinsic loss power approaching theoretical limits for alternating-current (AC) magnetic-field heating of nanoparticles are reported. This is achieved by engineering the effective magnetic anisotropy barrier of nanoparticles via alloying of hard and soft ferrites. 22 nm Co0.03Mn0.28Fe2.7O4/SiO2 nanoparticles reach a specific loss power value of 3417 W g−1 metal at a field of 33 kA m−1 and 380 kHz. Biocompatible Zn0.3Fe2.7O4/SiO2 nanoparticles achieve specific loss power of 500 W g−1 metal and intrinsic loss power of 26.8 nHm2 kg−1 at field parameters of 7 kA m−1 and 380 kHz, below the clinical safety limit. Magnetic bone cement achieves heating adequate for bone tumor hyperthermia, incorporating an ultralow dosage of just 1 wt% of nanoparticles. In cellular hyperthermia experiments, these nanoparticles demonstrate high cell death rate at low field parameters. Zn0.3Fe2.7O4/SiO2 nanoparticles show cell viabilities above 97% at concentrations up to 500 µg mL−1 within 48 h, suggesting toxicity lower than that of magnetite.

KW - intrinsic loss power

KW - magnetic anisotropy

KW - magnetic hyperthermia

KW - magnetic nanoparticles

KW - specific loss power

UR - http://www.scopus.com/inward/record.url?scp=85050069665&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85050069665&partnerID=8YFLogxK

U2 - 10.1002/smll.201800135

DO - 10.1002/smll.201800135

M3 - Article

C2 - 29931802

AN - SCOPUS:85050069665

VL - 14

JO - Small

JF - Small

SN - 1613-6810

IS - 29

M1 - 1800135

ER -