Low levels of β-Lactam antibiotics induce extracellular DNA release and biofilm formation in Staphylococcus aureus

Jeffrey B. Kaplan, Era A. Izano, Prerna Gopal, Michael T. Karwacki, Sangho Kim, Jeffrey L. Bose, Kenneth W Bayles, Alexander R. Horswill

Research output: Contribution to journalArticle

119 Citations (Scopus)

Abstract

Subminimal inhibitory concentrations of antibiotics have been shown to induce bacterial biofilm formation. Few studies have investigated antibiotic-induced biofilm formation in Staphylococcus aureus, an important human pathogen. Our goal was to measure S. aureus biofilm formation in the presence of low levels of β-lactam antibiotics. Fifteen phylogenetically diverse methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) strains were employed. Methicillin, ampicillin, amoxicillin, and cloxacillin were added to cultures at concentrations ranging from 0 × to 1 × MIC. Bio-film formation was measured in 96-well microtiter plates using a crystal violet binding assay. Autoaggregation was measured using a visual test tube settling assay. Extracellular DNA was quantitated using agarose gel electrophoresis. All four antibiotics induced biofilm formation in some strains. The amount of biofilm induction was as high as 10-fold and was inversely proportional to the amount of biofilm produced by the strain in the absence of antibiotics. MRSA strains of lineages USA300, USA400, and USA500 exhibited the highest levels of methicillin-induced biofilm induction. Biofilm formation induced by low-level methicillin was inhibited by DNase. Low-level methicillin also induced DNase-sensitive autoaggregation and extracellular DNA release. The biofilm induction phenotype was absent in a strain deficient in autolysin (atl). Our findings demonstrate that subminimal inhibitory concentrations of β-lactam antibiotics significantly induce autolysin-dependent extracellular DNA release and biofilm formation in some strains of S. aureus. IMPORTANCE The widespread use of antibiotics as growth promoters in agriculture may expose bacteria to low levels of the drugs. The aim of this study was to investigate the effects of low levels of antibiotics on bacterial autoaggregation and biofilm formation, two processes that have been shown to foster genetic exchange and antibiotic resistance. We found that low levels of β-lactam antibiotics, a class commonly used in both clinical and agricultural settings, caused significant autoaggregation and biofilm formation by the important human pathogen Staphylococcus aureus. Both processes were dependent on cell lysis and release of DNA into the environment. The effect was most pronounced among multidrug-resistant strains known as methicillinresistant S. aureus (MRSA). These results may shed light on the recalcitrance of some bacterial infections to antibiotic treatment in clinical settings and the evolution of antibiotic-resistant bacteria in agricultural settings.

Original languageEnglish (US)
JournalmBio
Volume3
Issue number4
DOIs
StatePublished - Jul 1 2012

Fingerprint

Lactams
Biofilms
Staphylococcus aureus
Anti-Bacterial Agents
DNA
Methicillin
N-Acetylmuramoyl-L-alanine Amidase
Deoxyribonucleases
Methicillin-Resistant Staphylococcus aureus
Cloxacillin
Bacteria
Gentian Violet
Agar Gel Electrophoresis
Amoxicillin
Ampicillin
Microbial Drug Resistance
Agriculture
Bacterial Infections

ASJC Scopus subject areas

  • Microbiology
  • Virology

Cite this

Kaplan, J. B., Izano, E. A., Gopal, P., Karwacki, M. T., Kim, S., Bose, J. L., ... Horswill, A. R. (2012). Low levels of β-Lactam antibiotics induce extracellular DNA release and biofilm formation in Staphylococcus aureus. mBio, 3(4). https://doi.org/10.1128/mBio.00198-12

Low levels of β-Lactam antibiotics induce extracellular DNA release and biofilm formation in Staphylococcus aureus. / Kaplan, Jeffrey B.; Izano, Era A.; Gopal, Prerna; Karwacki, Michael T.; Kim, Sangho; Bose, Jeffrey L.; Bayles, Kenneth W; Horswill, Alexander R.

In: mBio, Vol. 3, No. 4, 01.07.2012.

Research output: Contribution to journalArticle

Kaplan, Jeffrey B. ; Izano, Era A. ; Gopal, Prerna ; Karwacki, Michael T. ; Kim, Sangho ; Bose, Jeffrey L. ; Bayles, Kenneth W ; Horswill, Alexander R. / Low levels of β-Lactam antibiotics induce extracellular DNA release and biofilm formation in Staphylococcus aureus. In: mBio. 2012 ; Vol. 3, No. 4.
@article{1abc3ac90783477abca8d39285d26901,
title = "Low levels of β-Lactam antibiotics induce extracellular DNA release and biofilm formation in Staphylococcus aureus",
abstract = "Subminimal inhibitory concentrations of antibiotics have been shown to induce bacterial biofilm formation. Few studies have investigated antibiotic-induced biofilm formation in Staphylococcus aureus, an important human pathogen. Our goal was to measure S. aureus biofilm formation in the presence of low levels of β-lactam antibiotics. Fifteen phylogenetically diverse methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) strains were employed. Methicillin, ampicillin, amoxicillin, and cloxacillin were added to cultures at concentrations ranging from 0 × to 1 × MIC. Bio-film formation was measured in 96-well microtiter plates using a crystal violet binding assay. Autoaggregation was measured using a visual test tube settling assay. Extracellular DNA was quantitated using agarose gel electrophoresis. All four antibiotics induced biofilm formation in some strains. The amount of biofilm induction was as high as 10-fold and was inversely proportional to the amount of biofilm produced by the strain in the absence of antibiotics. MRSA strains of lineages USA300, USA400, and USA500 exhibited the highest levels of methicillin-induced biofilm induction. Biofilm formation induced by low-level methicillin was inhibited by DNase. Low-level methicillin also induced DNase-sensitive autoaggregation and extracellular DNA release. The biofilm induction phenotype was absent in a strain deficient in autolysin (atl). Our findings demonstrate that subminimal inhibitory concentrations of β-lactam antibiotics significantly induce autolysin-dependent extracellular DNA release and biofilm formation in some strains of S. aureus. IMPORTANCE The widespread use of antibiotics as growth promoters in agriculture may expose bacteria to low levels of the drugs. The aim of this study was to investigate the effects of low levels of antibiotics on bacterial autoaggregation and biofilm formation, two processes that have been shown to foster genetic exchange and antibiotic resistance. We found that low levels of β-lactam antibiotics, a class commonly used in both clinical and agricultural settings, caused significant autoaggregation and biofilm formation by the important human pathogen Staphylococcus aureus. Both processes were dependent on cell lysis and release of DNA into the environment. The effect was most pronounced among multidrug-resistant strains known as methicillinresistant S. aureus (MRSA). These results may shed light on the recalcitrance of some bacterial infections to antibiotic treatment in clinical settings and the evolution of antibiotic-resistant bacteria in agricultural settings.",
author = "Kaplan, {Jeffrey B.} and Izano, {Era A.} and Prerna Gopal and Karwacki, {Michael T.} and Sangho Kim and Bose, {Jeffrey L.} and Bayles, {Kenneth W} and Horswill, {Alexander R.}",
year = "2012",
month = "7",
day = "1",
doi = "10.1128/mBio.00198-12",
language = "English (US)",
volume = "3",
journal = "mBio",
issn = "2161-2129",
publisher = "American Society for Microbiology",
number = "4",

}

TY - JOUR

T1 - Low levels of β-Lactam antibiotics induce extracellular DNA release and biofilm formation in Staphylococcus aureus

AU - Kaplan, Jeffrey B.

AU - Izano, Era A.

AU - Gopal, Prerna

AU - Karwacki, Michael T.

AU - Kim, Sangho

AU - Bose, Jeffrey L.

AU - Bayles, Kenneth W

AU - Horswill, Alexander R.

PY - 2012/7/1

Y1 - 2012/7/1

N2 - Subminimal inhibitory concentrations of antibiotics have been shown to induce bacterial biofilm formation. Few studies have investigated antibiotic-induced biofilm formation in Staphylococcus aureus, an important human pathogen. Our goal was to measure S. aureus biofilm formation in the presence of low levels of β-lactam antibiotics. Fifteen phylogenetically diverse methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) strains were employed. Methicillin, ampicillin, amoxicillin, and cloxacillin were added to cultures at concentrations ranging from 0 × to 1 × MIC. Bio-film formation was measured in 96-well microtiter plates using a crystal violet binding assay. Autoaggregation was measured using a visual test tube settling assay. Extracellular DNA was quantitated using agarose gel electrophoresis. All four antibiotics induced biofilm formation in some strains. The amount of biofilm induction was as high as 10-fold and was inversely proportional to the amount of biofilm produced by the strain in the absence of antibiotics. MRSA strains of lineages USA300, USA400, and USA500 exhibited the highest levels of methicillin-induced biofilm induction. Biofilm formation induced by low-level methicillin was inhibited by DNase. Low-level methicillin also induced DNase-sensitive autoaggregation and extracellular DNA release. The biofilm induction phenotype was absent in a strain deficient in autolysin (atl). Our findings demonstrate that subminimal inhibitory concentrations of β-lactam antibiotics significantly induce autolysin-dependent extracellular DNA release and biofilm formation in some strains of S. aureus. IMPORTANCE The widespread use of antibiotics as growth promoters in agriculture may expose bacteria to low levels of the drugs. The aim of this study was to investigate the effects of low levels of antibiotics on bacterial autoaggregation and biofilm formation, two processes that have been shown to foster genetic exchange and antibiotic resistance. We found that low levels of β-lactam antibiotics, a class commonly used in both clinical and agricultural settings, caused significant autoaggregation and biofilm formation by the important human pathogen Staphylococcus aureus. Both processes were dependent on cell lysis and release of DNA into the environment. The effect was most pronounced among multidrug-resistant strains known as methicillinresistant S. aureus (MRSA). These results may shed light on the recalcitrance of some bacterial infections to antibiotic treatment in clinical settings and the evolution of antibiotic-resistant bacteria in agricultural settings.

AB - Subminimal inhibitory concentrations of antibiotics have been shown to induce bacterial biofilm formation. Few studies have investigated antibiotic-induced biofilm formation in Staphylococcus aureus, an important human pathogen. Our goal was to measure S. aureus biofilm formation in the presence of low levels of β-lactam antibiotics. Fifteen phylogenetically diverse methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) strains were employed. Methicillin, ampicillin, amoxicillin, and cloxacillin were added to cultures at concentrations ranging from 0 × to 1 × MIC. Bio-film formation was measured in 96-well microtiter plates using a crystal violet binding assay. Autoaggregation was measured using a visual test tube settling assay. Extracellular DNA was quantitated using agarose gel electrophoresis. All four antibiotics induced biofilm formation in some strains. The amount of biofilm induction was as high as 10-fold and was inversely proportional to the amount of biofilm produced by the strain in the absence of antibiotics. MRSA strains of lineages USA300, USA400, and USA500 exhibited the highest levels of methicillin-induced biofilm induction. Biofilm formation induced by low-level methicillin was inhibited by DNase. Low-level methicillin also induced DNase-sensitive autoaggregation and extracellular DNA release. The biofilm induction phenotype was absent in a strain deficient in autolysin (atl). Our findings demonstrate that subminimal inhibitory concentrations of β-lactam antibiotics significantly induce autolysin-dependent extracellular DNA release and biofilm formation in some strains of S. aureus. IMPORTANCE The widespread use of antibiotics as growth promoters in agriculture may expose bacteria to low levels of the drugs. The aim of this study was to investigate the effects of low levels of antibiotics on bacterial autoaggregation and biofilm formation, two processes that have been shown to foster genetic exchange and antibiotic resistance. We found that low levels of β-lactam antibiotics, a class commonly used in both clinical and agricultural settings, caused significant autoaggregation and biofilm formation by the important human pathogen Staphylococcus aureus. Both processes were dependent on cell lysis and release of DNA into the environment. The effect was most pronounced among multidrug-resistant strains known as methicillinresistant S. aureus (MRSA). These results may shed light on the recalcitrance of some bacterial infections to antibiotic treatment in clinical settings and the evolution of antibiotic-resistant bacteria in agricultural settings.

UR - http://www.scopus.com/inward/record.url?scp=84865703681&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84865703681&partnerID=8YFLogxK

U2 - 10.1128/mBio.00198-12

DO - 10.1128/mBio.00198-12

M3 - Article

C2 - 22851659

AN - SCOPUS:84865703681

VL - 3

JO - mBio

JF - mBio

SN - 2161-2129

IS - 4

ER -