### Abstract

Purpose: Low-dose steroids have shown contradictory results in trials and three recent meta-analyses. We aimed to assess the efficacy and safety of low-dose steroids for severe sepsis and septic shock by Bayesian methodology. Methods: Randomized trials from three published meta-analyses were reviewed and entered in both classic and Bayesian databases to estimate relative risk reduction (RRR) for 28-day mortality, and relative risk increase (RRI) for shock reversal and side effects. Results: In septic shock trials only (Marik meta-analysis; N = 965), the probability that low-dose steroids decrease mortality by more than 15% (i.e., RRR > 15%) was 0.41 (0.24 for RRR > 20% and 0.14 for RRR > 25%). For severe sepsis and septic shock trials combined, the results were as follows: (1) for the Annane meta-analysis (N = 1,228), the probabilities were 0.57 (RRR > 15%), 0.32 (RRR > 20%), and 0.13 (RRR > 25%); (2) for the Minneci meta-analysis (N = 1,171), the probability was 0.57 to achieve mortality RRR > 15%, 0.32 (RRR > 20%), and 0.14 (RRR > 25%). The removal of the Sprung trial from each analysis did not change the overall results. The probability of achieving shock reversal ranged from 65 to 92%. The probability of developing steroid-induced side effects was as follows: for gastrointestinal bleeding (N = 924), there was a 0.73 probability of steroids causing an RRI > 1%, 0.70 for RRI > 2%, and 0.67 for RRI > 5%; for superinfections (N = 964), probabilities were 0.81 (RRI > 1%), 0.76 (RRI > 2%), and 0.70 (RRI > 5%); and for hyperglycemia (N = 540), 0.99 (RRI > 1%), 0.97 (RRI > 2%), and 0.94 (RRI > 5%). Conclusions: Based on clinically meaningful thresholds (RRR > 15-25%) for mortality reduction in severe sepsis or septic shock, the Bayesian approach to all three meta-analyses consistently showed that low-dose steroids were not associated with survival benefits. The probabilities of developing steroid-induced side effects (superinfections, bleeding, and hyperglycemia) were high for all analyses.

Original language | English (US) |
---|---|

Pages (from-to) | 420-429 |

Number of pages | 10 |

Journal | Intensive Care Medicine |

Volume | 37 |

Issue number | 3 |

DOIs | |

State | Published - Mar 1 2011 |

### Fingerprint

### Keywords

- Sepsis
- Shock
- Steroids

### ASJC Scopus subject areas

- Critical Care and Intensive Care Medicine

### Cite this

**Low-dose steroids for septic shock and severe sepsis : The use of Bayesian statistics to resolve clinical trial controversies.** / Kalil, Andre C; Sun, Junfeng.

Research output: Contribution to journal › Review article

*Intensive Care Medicine*, vol. 37, no. 3, pp. 420-429. https://doi.org/10.1007/s00134-010-2121-0

}

TY - JOUR

T1 - Low-dose steroids for septic shock and severe sepsis

T2 - The use of Bayesian statistics to resolve clinical trial controversies

AU - Kalil, Andre C

AU - Sun, Junfeng

PY - 2011/3/1

Y1 - 2011/3/1

N2 - Purpose: Low-dose steroids have shown contradictory results in trials and three recent meta-analyses. We aimed to assess the efficacy and safety of low-dose steroids for severe sepsis and septic shock by Bayesian methodology. Methods: Randomized trials from three published meta-analyses were reviewed and entered in both classic and Bayesian databases to estimate relative risk reduction (RRR) for 28-day mortality, and relative risk increase (RRI) for shock reversal and side effects. Results: In septic shock trials only (Marik meta-analysis; N = 965), the probability that low-dose steroids decrease mortality by more than 15% (i.e., RRR > 15%) was 0.41 (0.24 for RRR > 20% and 0.14 for RRR > 25%). For severe sepsis and septic shock trials combined, the results were as follows: (1) for the Annane meta-analysis (N = 1,228), the probabilities were 0.57 (RRR > 15%), 0.32 (RRR > 20%), and 0.13 (RRR > 25%); (2) for the Minneci meta-analysis (N = 1,171), the probability was 0.57 to achieve mortality RRR > 15%, 0.32 (RRR > 20%), and 0.14 (RRR > 25%). The removal of the Sprung trial from each analysis did not change the overall results. The probability of achieving shock reversal ranged from 65 to 92%. The probability of developing steroid-induced side effects was as follows: for gastrointestinal bleeding (N = 924), there was a 0.73 probability of steroids causing an RRI > 1%, 0.70 for RRI > 2%, and 0.67 for RRI > 5%; for superinfections (N = 964), probabilities were 0.81 (RRI > 1%), 0.76 (RRI > 2%), and 0.70 (RRI > 5%); and for hyperglycemia (N = 540), 0.99 (RRI > 1%), 0.97 (RRI > 2%), and 0.94 (RRI > 5%). Conclusions: Based on clinically meaningful thresholds (RRR > 15-25%) for mortality reduction in severe sepsis or septic shock, the Bayesian approach to all three meta-analyses consistently showed that low-dose steroids were not associated with survival benefits. The probabilities of developing steroid-induced side effects (superinfections, bleeding, and hyperglycemia) were high for all analyses.

AB - Purpose: Low-dose steroids have shown contradictory results in trials and three recent meta-analyses. We aimed to assess the efficacy and safety of low-dose steroids for severe sepsis and septic shock by Bayesian methodology. Methods: Randomized trials from three published meta-analyses were reviewed and entered in both classic and Bayesian databases to estimate relative risk reduction (RRR) for 28-day mortality, and relative risk increase (RRI) for shock reversal and side effects. Results: In septic shock trials only (Marik meta-analysis; N = 965), the probability that low-dose steroids decrease mortality by more than 15% (i.e., RRR > 15%) was 0.41 (0.24 for RRR > 20% and 0.14 for RRR > 25%). For severe sepsis and septic shock trials combined, the results were as follows: (1) for the Annane meta-analysis (N = 1,228), the probabilities were 0.57 (RRR > 15%), 0.32 (RRR > 20%), and 0.13 (RRR > 25%); (2) for the Minneci meta-analysis (N = 1,171), the probability was 0.57 to achieve mortality RRR > 15%, 0.32 (RRR > 20%), and 0.14 (RRR > 25%). The removal of the Sprung trial from each analysis did not change the overall results. The probability of achieving shock reversal ranged from 65 to 92%. The probability of developing steroid-induced side effects was as follows: for gastrointestinal bleeding (N = 924), there was a 0.73 probability of steroids causing an RRI > 1%, 0.70 for RRI > 2%, and 0.67 for RRI > 5%; for superinfections (N = 964), probabilities were 0.81 (RRI > 1%), 0.76 (RRI > 2%), and 0.70 (RRI > 5%); and for hyperglycemia (N = 540), 0.99 (RRI > 1%), 0.97 (RRI > 2%), and 0.94 (RRI > 5%). Conclusions: Based on clinically meaningful thresholds (RRR > 15-25%) for mortality reduction in severe sepsis or septic shock, the Bayesian approach to all three meta-analyses consistently showed that low-dose steroids were not associated with survival benefits. The probabilities of developing steroid-induced side effects (superinfections, bleeding, and hyperglycemia) were high for all analyses.

KW - Sepsis

KW - Shock

KW - Steroids

UR - http://www.scopus.com/inward/record.url?scp=79953826862&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79953826862&partnerID=8YFLogxK

U2 - 10.1007/s00134-010-2121-0

DO - 10.1007/s00134-010-2121-0

M3 - Review article

VL - 37

SP - 420

EP - 429

JO - Intensive Care Medicine

JF - Intensive Care Medicine

SN - 0342-4642

IS - 3

ER -