Lifetime reproductive performance and survival analysis of mice divergently selected for heat loss

A. S. Bhatnagar, Merlyn K Nielsen

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Divergent selection for heat loss was implemented in mice creating maintenance high (MH) and low maintenance (ML) lines and an unselected control (MC) in 3 independent replicates. Mice from the ML line have improved feed efficiency, due to decreased maintenance energy requirement, but there is potential for a correlated decline in reproductive performance and survivability. Number fully formed (NFF), number born alive (NBA), number weaned (NW), litter weaning weight (LWW), pup weaning weight (PWW), fraction alive at birth (FAB), fraction alive at weaning, and birth interval were recorded at every parity on 21 mating pairs from each line × replicate combination cohabitated at 7 wk of age and maintained for up to 1 yr. Traits were summed over parities to evaluate lifetime production. Pairs were culled due to death or illness, no first parity by 42 d cohabitation, 2 consecutive litters with none born alive, 3 consecutive litters with none weaned, 42 d between parities, or average size of most recent 2 litters less than half the average of first 3 litters. Survival probabilities were produced and evaluated for each line and used to calculate mean number of parities using a Markov-chain algorithm assuming a maximum of 4, 6, 8, 10, or 12 parities or 1 yr. Line was insignificant for all litter traits while NFF, NW, and FAB decreased with parity (P < 0.05) and PWW tended to increase (P < 0.07). The MC mice had higher lifetime NW, LWW, and PWW (P < 0.04). Birth interval showed that MH mice had increasingly larger intervals while remaining the same in ML mice (P < 0.01). In the survival analysis, MC mice had the greatest survival rates overall, but ML mice had the greatest rates in the period up to 5 parities while MH mice had the greatest rates in later parities. This resulted in greater mean number of parities for ML mice up to maximum of 8 parities and higher means for MH mice when the maximum number of allowed parities was 10 or higher. Reproductive performance was not substantially affected by changing maintenance energy requirements. The ML animals appear to survive well in early parities and produce more parities when a low number of maximum parities is enforced, but this benefit declines in later parities and MH animals survive better and increase mean number of parities when turnover rates are low. Therefore, selection for low maintenance animals may be beneficial for systems desiring a short generation interval but less so for systems desiring longevity.

Original languageEnglish (US)
Pages (from-to)477-484
Number of pages8
JournalJournal of animal science
Volume92
Issue number2
DOIs
StatePublished - Feb 14 2014

Fingerprint

Survival Analysis
parity (reproduction)
Parity
reproductive performance
Hot Temperature
heat
mice
litters (young animals)
Maintenance
Weaning
weaning weight
Weights and Measures
pups
Birth Intervals
energy requirements
Parturition
Markov Chains
animals

Keywords

  • Feed efficiency
  • Heat loss
  • Mice
  • Reproduction
  • Survival

ASJC Scopus subject areas

  • Food Science
  • Animal Science and Zoology
  • Genetics

Cite this

Lifetime reproductive performance and survival analysis of mice divergently selected for heat loss. / Bhatnagar, A. S.; Nielsen, Merlyn K.

In: Journal of animal science, Vol. 92, No. 2, 14.02.2014, p. 477-484.

Research output: Contribution to journalArticle

Bhatnagar, A. S. ; Nielsen, Merlyn K. / Lifetime reproductive performance and survival analysis of mice divergently selected for heat loss. In: Journal of animal science. 2014 ; Vol. 92, No. 2. pp. 477-484.
@article{e3313c35e76d47e1bd23a5267966bcfc,
title = "Lifetime reproductive performance and survival analysis of mice divergently selected for heat loss",
abstract = "Divergent selection for heat loss was implemented in mice creating maintenance high (MH) and low maintenance (ML) lines and an unselected control (MC) in 3 independent replicates. Mice from the ML line have improved feed efficiency, due to decreased maintenance energy requirement, but there is potential for a correlated decline in reproductive performance and survivability. Number fully formed (NFF), number born alive (NBA), number weaned (NW), litter weaning weight (LWW), pup weaning weight (PWW), fraction alive at birth (FAB), fraction alive at weaning, and birth interval were recorded at every parity on 21 mating pairs from each line × replicate combination cohabitated at 7 wk of age and maintained for up to 1 yr. Traits were summed over parities to evaluate lifetime production. Pairs were culled due to death or illness, no first parity by 42 d cohabitation, 2 consecutive litters with none born alive, 3 consecutive litters with none weaned, 42 d between parities, or average size of most recent 2 litters less than half the average of first 3 litters. Survival probabilities were produced and evaluated for each line and used to calculate mean number of parities using a Markov-chain algorithm assuming a maximum of 4, 6, 8, 10, or 12 parities or 1 yr. Line was insignificant for all litter traits while NFF, NW, and FAB decreased with parity (P < 0.05) and PWW tended to increase (P < 0.07). The MC mice had higher lifetime NW, LWW, and PWW (P < 0.04). Birth interval showed that MH mice had increasingly larger intervals while remaining the same in ML mice (P < 0.01). In the survival analysis, MC mice had the greatest survival rates overall, but ML mice had the greatest rates in the period up to 5 parities while MH mice had the greatest rates in later parities. This resulted in greater mean number of parities for ML mice up to maximum of 8 parities and higher means for MH mice when the maximum number of allowed parities was 10 or higher. Reproductive performance was not substantially affected by changing maintenance energy requirements. The ML animals appear to survive well in early parities and produce more parities when a low number of maximum parities is enforced, but this benefit declines in later parities and MH animals survive better and increase mean number of parities when turnover rates are low. Therefore, selection for low maintenance animals may be beneficial for systems desiring a short generation interval but less so for systems desiring longevity.",
keywords = "Feed efficiency, Heat loss, Mice, Reproduction, Survival",
author = "Bhatnagar, {A. S.} and Nielsen, {Merlyn K}",
year = "2014",
month = "2",
day = "14",
doi = "10.2527/jas.2013-6974",
language = "English (US)",
volume = "92",
pages = "477--484",
journal = "Journal of Animal Science",
issn = "0021-8812",
publisher = "American Society of Animal Science",
number = "2",

}

TY - JOUR

T1 - Lifetime reproductive performance and survival analysis of mice divergently selected for heat loss

AU - Bhatnagar, A. S.

AU - Nielsen, Merlyn K

PY - 2014/2/14

Y1 - 2014/2/14

N2 - Divergent selection for heat loss was implemented in mice creating maintenance high (MH) and low maintenance (ML) lines and an unselected control (MC) in 3 independent replicates. Mice from the ML line have improved feed efficiency, due to decreased maintenance energy requirement, but there is potential for a correlated decline in reproductive performance and survivability. Number fully formed (NFF), number born alive (NBA), number weaned (NW), litter weaning weight (LWW), pup weaning weight (PWW), fraction alive at birth (FAB), fraction alive at weaning, and birth interval were recorded at every parity on 21 mating pairs from each line × replicate combination cohabitated at 7 wk of age and maintained for up to 1 yr. Traits were summed over parities to evaluate lifetime production. Pairs were culled due to death or illness, no first parity by 42 d cohabitation, 2 consecutive litters with none born alive, 3 consecutive litters with none weaned, 42 d between parities, or average size of most recent 2 litters less than half the average of first 3 litters. Survival probabilities were produced and evaluated for each line and used to calculate mean number of parities using a Markov-chain algorithm assuming a maximum of 4, 6, 8, 10, or 12 parities or 1 yr. Line was insignificant for all litter traits while NFF, NW, and FAB decreased with parity (P < 0.05) and PWW tended to increase (P < 0.07). The MC mice had higher lifetime NW, LWW, and PWW (P < 0.04). Birth interval showed that MH mice had increasingly larger intervals while remaining the same in ML mice (P < 0.01). In the survival analysis, MC mice had the greatest survival rates overall, but ML mice had the greatest rates in the period up to 5 parities while MH mice had the greatest rates in later parities. This resulted in greater mean number of parities for ML mice up to maximum of 8 parities and higher means for MH mice when the maximum number of allowed parities was 10 or higher. Reproductive performance was not substantially affected by changing maintenance energy requirements. The ML animals appear to survive well in early parities and produce more parities when a low number of maximum parities is enforced, but this benefit declines in later parities and MH animals survive better and increase mean number of parities when turnover rates are low. Therefore, selection for low maintenance animals may be beneficial for systems desiring a short generation interval but less so for systems desiring longevity.

AB - Divergent selection for heat loss was implemented in mice creating maintenance high (MH) and low maintenance (ML) lines and an unselected control (MC) in 3 independent replicates. Mice from the ML line have improved feed efficiency, due to decreased maintenance energy requirement, but there is potential for a correlated decline in reproductive performance and survivability. Number fully formed (NFF), number born alive (NBA), number weaned (NW), litter weaning weight (LWW), pup weaning weight (PWW), fraction alive at birth (FAB), fraction alive at weaning, and birth interval were recorded at every parity on 21 mating pairs from each line × replicate combination cohabitated at 7 wk of age and maintained for up to 1 yr. Traits were summed over parities to evaluate lifetime production. Pairs were culled due to death or illness, no first parity by 42 d cohabitation, 2 consecutive litters with none born alive, 3 consecutive litters with none weaned, 42 d between parities, or average size of most recent 2 litters less than half the average of first 3 litters. Survival probabilities were produced and evaluated for each line and used to calculate mean number of parities using a Markov-chain algorithm assuming a maximum of 4, 6, 8, 10, or 12 parities or 1 yr. Line was insignificant for all litter traits while NFF, NW, and FAB decreased with parity (P < 0.05) and PWW tended to increase (P < 0.07). The MC mice had higher lifetime NW, LWW, and PWW (P < 0.04). Birth interval showed that MH mice had increasingly larger intervals while remaining the same in ML mice (P < 0.01). In the survival analysis, MC mice had the greatest survival rates overall, but ML mice had the greatest rates in the period up to 5 parities while MH mice had the greatest rates in later parities. This resulted in greater mean number of parities for ML mice up to maximum of 8 parities and higher means for MH mice when the maximum number of allowed parities was 10 or higher. Reproductive performance was not substantially affected by changing maintenance energy requirements. The ML animals appear to survive well in early parities and produce more parities when a low number of maximum parities is enforced, but this benefit declines in later parities and MH animals survive better and increase mean number of parities when turnover rates are low. Therefore, selection for low maintenance animals may be beneficial for systems desiring a short generation interval but less so for systems desiring longevity.

KW - Feed efficiency

KW - Heat loss

KW - Mice

KW - Reproduction

KW - Survival

UR - http://www.scopus.com/inward/record.url?scp=84893701891&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84893701891&partnerID=8YFLogxK

U2 - 10.2527/jas.2013-6974

DO - 10.2527/jas.2013-6974

M3 - Article

VL - 92

SP - 477

EP - 484

JO - Journal of Animal Science

JF - Journal of Animal Science

SN - 0021-8812

IS - 2

ER -