Kanosamine biosynthesis: A likely source of the aminoshikimate pathway's nitrogen atom

Jiantao Guo, J. W. Frost

Research output: Contribution to journalArticle

53 Citations (Scopus)

Abstract

The biosynthetic source of the nitrogen atom incorporated into the aminoshikimate pathway has remained a question for some time. 3-Amino-3-deoxy-d-fructose 6-phosphate has previously been demonstrated to be a precursor to 4-amino-3,4-dideoxy-d-arabino-heptulosonic acid 7-phosphate and 3-amino-5-hydroxybenzoic acid via the inferred intermediacy of 1-deoxy-1-imino-d-erythrose 4-phosphate in Amycolatopsis mediterranei cell-free extract. This investigation examines the possibility that the natural product kanosamine might be a precursor to 3-amino-3-deoxy-d-fructose 6-phosphate. Kanosamine 6-phosphate was synthesized by a chemoenzymatic route and incubated in A. mediterranei cell-free lysate along with d-ribose 5-phosphate and phosphoenolpyruvate. Formation of 4-amino-3,4-dideoxy-d-arabino-heptulosonic acid 7-phosphate and 3-amino-5-hydroxybenzoic acid was observed. Subsequent incubation in A. mediterranei cell-free lysate of glutamine and NAD with UDP-glucose resulted in the formation of kanosamine. The bioconversion of UDP-glucose into kanosamine along with the bioconversion of kanosamine 6-phosphate into 4-amino-3,4-dideoxy-d-arabino-heptulosonic acid 7-phosphate and 3-amino-5-hydroxybenzoic acid suggests that kanosamine biosynthesis is the source of the aminoshikimate pathway's nitrogen atom.

Original languageEnglish (US)
Pages (from-to)10642-10643
Number of pages2
JournalJournal of the American Chemical Society
Volume124
Issue number36
DOIs
StatePublished - Sep 11 2002

Fingerprint

Biosynthesis
Phosphates
Nitrogen
Atoms
Uridine Diphosphate Glucose
Bioconversion
Acids
Fructose
Elementary particle sources
Phosphoenolpyruvate
Glucose
Cell Extracts
Biological Products
Glutamine
NAD
kanosamine
3-amino-5-hydroxybenzoic acid

ASJC Scopus subject areas

  • Chemistry(all)

Cite this

Kanosamine biosynthesis : A likely source of the aminoshikimate pathway's nitrogen atom. / Guo, Jiantao; Frost, J. W.

In: Journal of the American Chemical Society, Vol. 124, No. 36, 11.09.2002, p. 10642-10643.

Research output: Contribution to journalArticle

@article{57a50d0d21d047d5bb0dc806b8361bf4,
title = "Kanosamine biosynthesis: A likely source of the aminoshikimate pathway's nitrogen atom",
abstract = "The biosynthetic source of the nitrogen atom incorporated into the aminoshikimate pathway has remained a question for some time. 3-Amino-3-deoxy-d-fructose 6-phosphate has previously been demonstrated to be a precursor to 4-amino-3,4-dideoxy-d-arabino-heptulosonic acid 7-phosphate and 3-amino-5-hydroxybenzoic acid via the inferred intermediacy of 1-deoxy-1-imino-d-erythrose 4-phosphate in Amycolatopsis mediterranei cell-free extract. This investigation examines the possibility that the natural product kanosamine might be a precursor to 3-amino-3-deoxy-d-fructose 6-phosphate. Kanosamine 6-phosphate was synthesized by a chemoenzymatic route and incubated in A. mediterranei cell-free lysate along with d-ribose 5-phosphate and phosphoenolpyruvate. Formation of 4-amino-3,4-dideoxy-d-arabino-heptulosonic acid 7-phosphate and 3-amino-5-hydroxybenzoic acid was observed. Subsequent incubation in A. mediterranei cell-free lysate of glutamine and NAD with UDP-glucose resulted in the formation of kanosamine. The bioconversion of UDP-glucose into kanosamine along with the bioconversion of kanosamine 6-phosphate into 4-amino-3,4-dideoxy-d-arabino-heptulosonic acid 7-phosphate and 3-amino-5-hydroxybenzoic acid suggests that kanosamine biosynthesis is the source of the aminoshikimate pathway's nitrogen atom.",
author = "Jiantao Guo and Frost, {J. W.}",
year = "2002",
month = "9",
day = "11",
doi = "10.1021/ja026628m",
language = "English (US)",
volume = "124",
pages = "10642--10643",
journal = "Journal of the American Chemical Society",
issn = "0002-7863",
publisher = "American Chemical Society",
number = "36",

}

TY - JOUR

T1 - Kanosamine biosynthesis

T2 - A likely source of the aminoshikimate pathway's nitrogen atom

AU - Guo, Jiantao

AU - Frost, J. W.

PY - 2002/9/11

Y1 - 2002/9/11

N2 - The biosynthetic source of the nitrogen atom incorporated into the aminoshikimate pathway has remained a question for some time. 3-Amino-3-deoxy-d-fructose 6-phosphate has previously been demonstrated to be a precursor to 4-amino-3,4-dideoxy-d-arabino-heptulosonic acid 7-phosphate and 3-amino-5-hydroxybenzoic acid via the inferred intermediacy of 1-deoxy-1-imino-d-erythrose 4-phosphate in Amycolatopsis mediterranei cell-free extract. This investigation examines the possibility that the natural product kanosamine might be a precursor to 3-amino-3-deoxy-d-fructose 6-phosphate. Kanosamine 6-phosphate was synthesized by a chemoenzymatic route and incubated in A. mediterranei cell-free lysate along with d-ribose 5-phosphate and phosphoenolpyruvate. Formation of 4-amino-3,4-dideoxy-d-arabino-heptulosonic acid 7-phosphate and 3-amino-5-hydroxybenzoic acid was observed. Subsequent incubation in A. mediterranei cell-free lysate of glutamine and NAD with UDP-glucose resulted in the formation of kanosamine. The bioconversion of UDP-glucose into kanosamine along with the bioconversion of kanosamine 6-phosphate into 4-amino-3,4-dideoxy-d-arabino-heptulosonic acid 7-phosphate and 3-amino-5-hydroxybenzoic acid suggests that kanosamine biosynthesis is the source of the aminoshikimate pathway's nitrogen atom.

AB - The biosynthetic source of the nitrogen atom incorporated into the aminoshikimate pathway has remained a question for some time. 3-Amino-3-deoxy-d-fructose 6-phosphate has previously been demonstrated to be a precursor to 4-amino-3,4-dideoxy-d-arabino-heptulosonic acid 7-phosphate and 3-amino-5-hydroxybenzoic acid via the inferred intermediacy of 1-deoxy-1-imino-d-erythrose 4-phosphate in Amycolatopsis mediterranei cell-free extract. This investigation examines the possibility that the natural product kanosamine might be a precursor to 3-amino-3-deoxy-d-fructose 6-phosphate. Kanosamine 6-phosphate was synthesized by a chemoenzymatic route and incubated in A. mediterranei cell-free lysate along with d-ribose 5-phosphate and phosphoenolpyruvate. Formation of 4-amino-3,4-dideoxy-d-arabino-heptulosonic acid 7-phosphate and 3-amino-5-hydroxybenzoic acid was observed. Subsequent incubation in A. mediterranei cell-free lysate of glutamine and NAD with UDP-glucose resulted in the formation of kanosamine. The bioconversion of UDP-glucose into kanosamine along with the bioconversion of kanosamine 6-phosphate into 4-amino-3,4-dideoxy-d-arabino-heptulosonic acid 7-phosphate and 3-amino-5-hydroxybenzoic acid suggests that kanosamine biosynthesis is the source of the aminoshikimate pathway's nitrogen atom.

UR - http://www.scopus.com/inward/record.url?scp=0037063549&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0037063549&partnerID=8YFLogxK

U2 - 10.1021/ja026628m

DO - 10.1021/ja026628m

M3 - Article

C2 - 12207504

AN - SCOPUS:0037063549

VL - 124

SP - 10642

EP - 10643

JO - Journal of the American Chemical Society

JF - Journal of the American Chemical Society

SN - 0002-7863

IS - 36

ER -