Isotopic determination with molecular emission using laser-induced breakdown spectroscopy and laser-induced radical fluorescence

Z. H. Zhu, J. M. Li, Z. Q. Hao, S. S. Tang, Y. Tang, L. B. Guo, X. Y. Li, X. Y. Zeng, Y. F. Lu

Research output: Contribution to journalArticle

4 Scopus citations

Abstract

Molecular emission can be used for isotopic analysis in laser-induced breakdown spectroscopy (LIBS) due to its large isotopic shift. However, spectral weakness and interference have become the main flaws in molecular isotopic analysis, causing deterioration of quantitative accuracy and sensitivity. Here, to overcome these problems, laser-induced radical fluorescence (LIRF) was applied to enhance the molecular spectra and eliminate the spectral interference. The root mean square errors of cross validation (RMSECVs) of boron and carbon isotopes (11BO, 10BO, 12CN, and 13CN) improved to 2.632, 5.721, 5.990, and 1.543 at.%, as compared with 16.96, 35.79, 57.10, and 13.89 at.%, respectively, obtained in the case without LIRF. The limits of detection (LoDs) of 11BO, 10BO, 12CN, and 13CN were 0.9858, 0.8470, 1.606, and 1.193 at.%, respectively. This work demonstrates the feasibility of LIBS-LIRF to achieve isotopic determination with high accuracy and sensitivity.

Original languageEnglish (US)
Pages (from-to)470-482
Number of pages13
JournalOptics Express
Volume27
Issue number2
DOIs
StatePublished - Jan 21 2019

    Fingerprint

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Cite this